1,075 research outputs found

    Effect of hypoxia-inducible factor 1-alpha (HIF-1α) on proliferation and apoptosis of adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma cells

    Get PDF
    To understand whether hypoxia-inducible factor 1-alpha (HIF-1α) could protect AtT-20 cells from hypoxia induced apoptosis, we investigated the effects of HIF-1α on proliferation and apoptosis of adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma cells (AtT-20 cells). AtT-20 cells were treated with various concentrations of CoCl2 to induce hypoxia. 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide, a yellow tetrazole (MTT) was applied to detect the proliferation of these cells. Western blot assay and real time polymerase chain reaction (PCR) were used to determine the protein and mRNA expressions of HIF-1α, respectively. In addition, AtT-20 cells were transfected with siRNA targeting HIF-1α and treated with different concentrations of CoCl2. The transfection efficacy was assessed by real-time PCR and western blot assay. Apoptosis was measured by fluorescein isothiocyanate (FITC)-annexin V/ propidium iodide (PI) staining and TUNEL staining. The effect of CoCl2 on the proliferation of AtT-20 cells was in a concentration and time dependent manner. When the concentration of CoCl2 was ≤100 μM and/or duration of CoCl2 treatment was ≤48 h, CoCl2 triggered the proliferation of AtT-20 cells. Nevertheless, the apoptosis rate of cells transfected with HIF-1α-siRNA was markedly increased after CoCl2 treatment. These findings suggest that, HIF-1α can promote the proliferation of AtT-20 cells and exert anti-apoptotic effect under hypoxic condition.Key words: Hypoxia inducible factor–1α, cobalt chloride, apoptosis, pituitary adenom

    A Comparison of Centering Algorithms in the Astrometry of Cassini Imaging Science Subsystem Images and Anthe’s Astrometric Reduction

    Get PDF
    In the CAVIAR software package, a standard tool for astrometry of images from the Cassini imaging science subsystem (ISS), Gaussian fitting is used to measure the centre of point-like objects, achieving a typical precision of about 0.2 pixels. In this work, we consider how alternative methods may improve on this. We compare three traditional centroiding methods: two-dimensional Gaussian fitting, median, and modified moment. Results using 56 selected images show that the centroiding precision of the modified moment method is significantly better than the other two methods, with standard deviations for all residuals in sample and line of 0.065 and 0.063 pixels, respectively, representing a factor of over 2 improvement compared to Gaussian fitting. Secondly, a comparison of observations using Cassini ISS images of Anthe is performed. Anthe results show a similar improvement. The modified moment method is then used to reduce all ISS images of Anthe during the period 2008–2017. The observed-minus-calculated residuals relative to the JPL SAT393 ephemeris are calculated. In terms of α × cos(δ) and δ in the Cassini-centred international celestial reference frame, mean values of all residuals are close to 0 km, and their standard deviations are less than 1 km for narrow angle camera images, and about 4 km for wide angle camera images

    The universal definition of spin current

    Get PDF
    The spin current, orbit angular momentum current and total angular momentum current in a tensor form have been universally defined according to the quantum electrodynamics. Their conservation quantities and the continuity equations have been discussed in different cases. Non-relativistic approximation forms are deduced in order to explain their physical meanings, and to analyze some experimental results. The spin current of helical edge states in HgTe/CdTe quantum wells is calculated to demonstrate the properties of the spin current of the two dimensional quantum spin-Hall system. A generalized spin-orbit coupling term in the semiconducting media is deduced based on the theory of the electrodynamics in the moving media. It is recommended to use the effective total angular momentum current instead of the pure spin current to describe the distribution of polarization and the transport properties in spintronics

    Understanding public speakers’ performance: first contributions to support a computational approach

    Get PDF
    Communication is part of our everyday life and our ability to communicate can have a significant role in a variety of contexts in our personal, academic, and professional lives. For long, the characterization of what is a good communicator has been subject to research and debate by several areas, particularly in Education, with a focus on improving the performance of teachers. In this context, the literature suggests that the ability to communicate is not only defined by the verbal component, but also by a plethora of non-verbal contributions providing redundant or complementary information, and, sometimes, being the message itself. However, even though we can recognize a good or bad communicator, objectively, little is known about what aspects – and to what extent—define the quality of a presentation. The goal of this work is to create the grounds to support the study of the defining characteristics of a good communicator in a more systematic and objective form. To this end, we conceptualize and provide a first prototype for a computational approach to characterize the different elements that are involved in communication, from audiovisual data, illustrating the outcomes and applicability of the proposed methods on a video database of public speakers.publishe

    QM/MM MD and Free Energy Simulations of G9a-Like Protein (GLP) and Its Mutants: Understanding the Factors that Determine the Product Specificity

    Get PDF
    Certain lysine residues on histone tails could be methylated by protein lysine methyltransferases (PKMTs) using S-adenosyl-L-methionine (AdoMet) as the methyl donor. Since the methylation states of the target lysines play a fundamental role in the regulation of chromatin structure and gene expression, it is important to study the property of PKMTs that allows a specific number of methyl groups (one, two or three) to be added (termed as product specificity). It has been shown that the product specificity of PKMTs may be controlled in part by the existence of specific residues at the active site. One of the best examples is a Phe/Tyr switch found in many PKMTs. Here quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy simulations are performed on wild type G9a-like protein (GLP) and its F1209Y and Y1124F mutants for understanding the energetic origin of the product specificity and the reasons for the change of product specificity as a result of single-residue mutations at the Phe/Tyr switch as well as other positions. The free energy barriers of the methyl transfer processes calculated from our simulations are consistent with experimental data, supporting the suggestion that the relative free energy barriers may determine, at least in part, the product specificity of PKMTs. The changes of the free energy barriers as a result of the mutations are also discussed based on the structural information obtained from the simulations. The results suggest that the space and active-site interactions around the ε-amino group of the target lysine available for methyl addition appear to among the key structural factors in controlling the product specificity and activity of PKMTs
    • …
    corecore