48 research outputs found

    Reply to "Comment on `Lattice determination of Sigma - Lambda mixing' "

    Get PDF
    In this Reply, we respond to the above Comment. Our computation [Phys. Rev. D 91 (2015) 074512] only took into account pure QCD effects, arising from quark mass differences, so it is not surprising that there are discrepancies in isospin splittings and in the Sigma - Lambda mixing angle. We expect that these discrepancies will be smaller in a full calculation incorporating QED effects.Comment: 5 page

    QCD with light Wilson quarks on fine lattices (II): DD-HMC simulations and data analysis

    Get PDF
    In this second report on our recent numerical simulations of two-flavour QCD, we provide further technical details on the simulations and describe the methods we used to extract the meson masses and decay constants from the generated ensembles of gauge fields. Among the topics covered are the choice of the DD-HMC parameters, the issue of stability, autocorrelations and the statistical error analysis. Extensive data tables are included as well as a short discussion of the quark-mass dependence in partially quenched QCD, supplementing the physics analysis that was presented in the first paper in this series.Comment: TeX source, 35 pages, figures include

    A lattice determination of Sigma - Lambda mixing

    Get PDF
    Isospin breaking effects in baryon octet (and decuplet) masses are due to a combination of up and down quark mass differences and electromagnetic effects and lead to small mass splittings. Between the Sigma and Lambda this mass splitting is much larger, this being mostly due to their different wavefunctions. However when isospin is broken, there is a mixing between between these states. We describe the formalism necessary to determine the QCD mixing matrix and hence find the mixing angle and mass splitting between the Sigma and Lambda particles due to QCD effects.Comment: 40 pages, 5 figures, published versio

    A Feynman-Hellmann approach to the spin structure of hadrons

    Get PDF
    We perform a Nf = 2 + 1 lattice QCD simulation to determine the quark spin fractions of hadrons using the Feynman-Hellmann theorem. By introducing an external spin operator to the fermion action, the matrix elements relevant for quark spin fractions are extracted from the linear response of the hadron energies. Simulations indicate that the Feynman-Hellmann method offers statistical precision that is comparable to the standard three-point function approach, with the added benefit that it is less susceptible to excited state contamination. This suggests that the Feynman-Hellmann technique offers a promising alternative for calculations of quark line disconnected contributions to hadronic matrix elements. At the SU(3)-flavour symmetry point, we find that the connected quark spin fractions are universally in the range 55-70% for vector mesons and octet and decuplet baryons. There is an indication that the amount of spin suppression is quite sensitive to the strength of SU(3) breaking.Comment: 13 pages, 7 figure

    Axial and tensor charge of the nucleon with dynamical fermions

    Get PDF
    We present preliminary results for the axial and tensor charge of the nucleon obtained from simulations with N_f=2 clover fermions. A comparison with chiral perturbation theory is attempted.Comment: Talk presented at Lattice2004(weak), Fermilab, June 21-26, 2004, 3 pages, 3 figures, v2: one reference added, v3: acknowledgement extende

    QED effects in the pseudoscalar meson sector

    Get PDF
    In this paper we present results on the pseudoscalar meson masses from a fully dynamical simulation of QCD+QED, concentrating particularly on violations of isospin symmetry. We calculate the π +-π 0 splitting and also look at other isospin violating mass differences. We have presented results for these isospin splittings in [1]. In this paper we give more details of the techniques employed, discussing in particular the question of how much of the symmetry violation is due to QCD, arising from the different masses of the u and d quarks, and how much is due to QED, arising from the different charges of the quarks. This decomposition is not unique, it depends on the renormalisation scheme and scale. We suggest a renormalisation scheme in which Dashen’s theorem for neutral mesons holds, so that the electromagnetic self-energies of the neutral mesons are zero, and discuss how the self-energies change when we transform to a scheme such as M S, in which Dashen’s theorem for neutral mesons is violated

    Moments of generalized parton distributions and quark angular momentum of the nucleon

    Get PDF
    The internal structure of hadrons is important for a variety of topics, including the hadron form factors, proton spin and spin asymmetry in polarized proton scattering. For a systematic study generalized parton distributions (GPDs) encode important information on hadron structure in the entire impact parameter space. We report on a computation of nucleon GPDs based on simulations with two dynamical non-perturbatively improved Wilson quarks with pion masses down to 350MeV. We present results for the total angular momentum of quarks with chiral extrapolation based on covariant baryon chiral perturbation theory.Comment: Presented at 25th International Symposium on Lattice Field Theory, Regensburg, Germany, 30 Jul - 4 Aug 200
    corecore