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Abstract

In this second report on our recent numerical simulations of two-flavour QCD, we provide

further technical details on the simulations and describe the methods we used to extract the

meson masses and decay constants from the generated ensembles of gauge fields. Among

the topics covered are the choice of the DD-HMC parameters, the issue of stability, autocor-

relations and the statistical error analysis. Extensive data tables are included as well as a

short discussion of the quark-mass dependence in partially quenched QCD, supplementing

the physics analysis that was presented in the first paper in this series.

1. Introduction

Lattice QCD with Wilson quarks [1] has seen important algorithmic developments

in the last few years [2–8]. As a consequence, a large range of lattice spacings, lattice

volumes and quark masses can now be explored, using numerical simulations, thus

providing new physics opportunities and a greater lever arm for the extrapolations

to the continuum and the chiral limit. Our recent work [9] was the first to fully profit

from the technical breakthrough and several other projects, simulating QCD with

∗ On leave from Centre de Physique Théorique, CNRS Luminy, F-13288 Marseille, France
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two [10,11] and three [12–14] flavours of light Wilson quarks, or with two flavours

and a twisted mass term [15], are currently underway, all heavily depending on the

new generation of algorithms.

The present paper is the second in a series of two papers devoted to the study of

two-flavour QCD at small quark masses and lattice spacings. In the first paper [9],

the focus was on the physics results, while here we give a fairly detailed technical

account of the simulations that we have performed.

Perhaps the most important items that we discuss are the stability of the simula-

tions (sect. 3) and the pattern of autocorrelation times observed in our runs (sect. 4).

We also describe, in sect. 5, the methods that we used to extract the meson masses

and decay constants from the generated ensembles of gauge fields (extensive data

tables are included in appendix C). The paper ends with an addendum to the first

paper, where we briefly discuss the quark-mass dependence of various quantities in

partially quenched QCD with 2 + 1 flavours of quarks.

2. Simulation parameters

We consider the Wilson formulation of lattice QCD, optionally O(a)-improved, with

a doublet of mass-degenerate sea quarks. The notation and normalization conven-

tions adopted in this paper coincide with those already used in our previous paper

[9]. In particular, the parameters of the lattice theory are the inverse bare coupling

β, the sea-quark hopping parameter κsea and the coefficient csw of the Sheikoleslami-

Wohlert improvement term [16,17].

All simulations reported here were performed using the DD-HMC simulation algo-

rithm [7]. As suggested by the name, the algorithm combines domain-decomposition

ideas with the HMC algorithm [18]. More precisely, by dividing the lattice into non-

overlapping rectangular blocks, a natural separation of the high-frequency from the

low-frequency modes of the fields is achieved. Following Sexton and Weingarten [19],

the different modes are then evolved using different molecular-dynamics step sizes,

which results in a significant acceleration of the simulation.

On a given lattice and at fixed coupling, the simulations progressed from the larger

to the smaller quark masses, normally skipping 1500 molecular-dynamics trajectories

for thermalization. The number Ntrj of trajectories generated after thermalization,

the separation Nsep (in numbers of trajectories) between successive saved field con-

figurations and the number Ncfg of saved fields are given in table 1. Different runs at
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Table 1. Lattice parameters and simulation statistics

Run Lattice β csw κsea Ntrj Nsep Ncfg

A1a 32 × 243 5.6 0 0.15750 6300 100 64

A1b 0.15750 5070 30 169

A2 0.15800 10800 100 109

A3a 0.15825 6100 100 62

A3b 0.15825 3800 100 38

A4 0.15835 4950 50 100

B1 64 × 323 5.8 0 0.15410 5050 50 100

B2 0.15440 5200 50 101

B3 0.15455 5150 50 104

B4 0.15462 5050 50 102

C1 64 × 243 5.6 0 0.15800 3450 30 116

D1 48 × 243 5.3 1.90952 0.13550 5150 50 104

D2 0.13590 5130 30 171

D3 0.13610 5040 30 168

D4 0.13620 5010 30 168

D5 0.13625 5040 30 169

E1 64 × 323 5.3 1.90952 0.13550 5344 32 168

E2 0.13590 5024 32 158

E3 0.13605 5024 32 158

the same lattice parameters (such as A3a and A3b) are distinguished by a lower-case

latin index. In our previous paper [9], only the runs A1a, A2, A3a, A3b, B1–B4 and

D1–D5 were included in the physics analysis. The other runs listed in table 1 merely

serve, in sections 3 and 4, to clarify some technical issues.

The DD-HMC simulation algorithm was implemented following the lines of ref. [7].

In particular, for the solution of the Dirac equation on the full lattice, the Schwarz-

preconditioned GCR solver described in ref. [6] was used. The so-called replay trick,

however, was switched off in the more recent simulations A3b–E3, because trajectory

replays would have been rare and hardly worth the extra effort (see subsect. 3.3).

No attempt was made to tune the DD-HMC algorithm and most of its parameters

were actually set to some fixed values, the same as the ones already chosen in ref. [7].

3



Table 2. DD-HMC parameters, acceptance rate and average solver iteration numbers

Run Block size N2 Pacc 〈NGCR〉 〈NCG〉

A1a 8 × 62 × 12 5 0.81∗ 23 73

A1b 8 × 6 × 122 5 0.82 22 89

A2 8 × 62 × 12 6 0.79∗ 39 74

A3a 10 0.89∗ 54 75

A3b 10 0.86 54 75

A4 16 0.91 73 75

B1 83 × 16 8 0.84 32 85

B2 10 0.89 52 87

B3 12 0.87 74 87

B4 14 0.92 90 88

C1 8 × 6 × 122 7 0.81 41 92

D1 62 × 122 7 0.81 25 120

D2 8 0.80 41 123

D3 12 0.87 58 124

D4 14 0.87 73 125

D5 18 0.89 87 125

E1 84 9 0.80 25 121

E2 11 0.84 41 124

E3 13 0.83 53 125

∗ Transition probability includes trajectory replays

Among these were the trajectory length τ = 0.5, the integration step numbers

N0 = 4 and N1 = 5 associated to the gauge and block fermion forces as well as the

admitted tolerances (r1, r2, r̃1, r̃2) = (10−8, 10−7, 10−11, 10−10) for the numerical

solution of the Dirac equation on the blocks and the full lattice †. The parameters of

the Schwarz-preconditioned GCR solver were fixed to the values quoted in ref. [6],

† The trajectory length τ and thus the integration step sizes τ/N2, etc., refer to a particular nor-

malization of the kinetic term in the molecular-dynamics Hamiltonian. Here the normalizations are

the same as in ref. [7], i.e. the term is assumed to be equal to 1

2
(Π, Π) =

∑

x,µ
tr{Π(x, µ)†Π(x, µ)},

where Π(x, µ) denotes the canonical momentum of the link variable U(x, µ).
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except for the number nkv of Krylov vectors generated before the GCR recursion is

restarted, which was set to 32 in run D5 and to 24 in all other runs.

What remains to be specified are then the size of the blocks on which the algorithm

operates and the integration step number N2 associated to the block interaction term

in the molecular-dynamics Hamiltonian (see table 2). In practice the latter must be

increased as one moves to lighter quark masses in order to preserve a high acceptance

rate Pacc. The average number NGCR of GCR solver iterations needed along the

trajectories also depends on N2 (it decreases when N2 goes up), while the average

number NCG of conjugate-gradient iterations required for the computation of the

block terms in the molecular-dynamics equations is largely determined by the block

size.

With the chosen parameters, the reversibility of the molecular-dynamics trajecto-

ries is guaranteed to high precision. In the tests that we have performed, the average

absolute deviation of the components of the link variables after a return trajectory

was at most 3× 10−9, while in the case of the Hamiltonian the observed differences

were less than 4 × 10−6. Deviations larger than 10 times the average occurred in

less than 1% of the cases and never went beyond 100 times the average.

3. Spectral gap and stability issues

The Wilson–Dirac operator preserves chiral symmetry only up to lattice effects and

is therefore not rigorously protected from having eigenvalues much smaller than the

quark mass. Exceptionally small eigenvalues do not invalidate the theory but may

lead to instabilities in numerical simulations, depending, to some extent, on which

simulation algorithm is used.

3.1 Spectral gap of the Dirac operator

In a previous dedicated study [20], we computed the distribution of the spectral gap

of the hermitian lattice Dirac operator on the lattices A1 −A4, B1, B2, C1 and D1.

The distributions turned out to be well separated from the origin, thus showing, a

posteriori, that the simulations were safe of exceptionally small eigenvalues and the

associated instabilities. Moreover, based on the observed scaling properties of the

distributions on the A, B and C lattices, we argued that this will always be so in

the large-volume regime of the unimproved Wilson theory.

The gap distributions have now also been computed on the lattices B3, B4, D2 −

D5, E2 and E3. In the following, however, we focus on the improved theory, because
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Fig. 1. Normalized histograms of the (unrenormalized) spectral gap µ of the her-

mitian lattice Dirac operator, as obtained in the runs D2 −D5. The bin size is 2 MeV

and the dotted vertical lines indicate the position of the median µ̄ of the distributions.

The data were converted to physical units using a = 0.0784 fm [9].

the results obtained on the B lattices are fully in line with the behaviour expected

from our previous paper [20].

At first sight, the gap distributions in the improved theory look similar to those

in the unimproved theory (see fig. 1). In particular, they are well separated from the

origin, on all lattices that we have simulated, and the median of the distributions

again turns out to be a practically linear function of the sea-quark mass (fig. 2).

However, the dependence of the width σ of the distributions on the quark mass

and the lattice size is different (see table 3) †. In the case of the D-series of lattices,

for example, the width decreases by as much as a factor of 1.5 from the largest to

the smallest quark mass, while no obvious mass-dependence was seen on the A and

† Following ref. [20], we define the width of the distributions through σ = 1

2
(v − u), where [u, v]

is the smallest range in µ, which contains more than 68.3% of the data.
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Fig. 2. Median µ̄ of the gap distributions obtained in runs D1 − D5 (data points),

plotted as a function of the bare sea-quark mass msea (see subsect. 5.2 for the precise

definition of the latter). The line is a linear fit of the data without constant term.

B lattices. Moreover, σ does not appear to scale proportionally to the inverse square

root of the (four-dimensional) volume V of the lattice (see fig. 3). The widths on

the lattices D2 and E2, for example, turned out to be nearly the same, contrary to

what was expected on the basis of the experience made in the unimproved theory.

Another perhaps not unrelated observation is that the median of the distribution

on the D and E lattices is always smaller than the threshold of the spectral density

in infinite volume, which we expect to be at ZAmsea [20], ZA being the axial-current

renormalization constant (ZA = 0.75(1) on these lattices [21]). The spectral density

in finite volume thus has a tail that extends a few MeV below the threshold. On the

other hand, the values quoted in table 3 of the average splitting 〈∆〉 of the lowest

four eigenvalues suggest that the tail scales to zero in the infinite-volume limit, as it

has to be if the density in infinite volume does not extend all the way to zero [20].

At present, however, there is still no theoretical understanding of the dependence

of the gap distribution on the quark mass and the lattice size. In particular, the fact

that the improved and the unimproved theory behave differently in this respect re-

mains unexplained. Partially quenched (Wilson) chiral perturbation theory may be

a framework in which these questions can be addressed [22] and further insight may

perhaps also be gained by studying the localization properties of the eigenfunctions

and the convergence of the spectral density to the infinite-volume limit. It would

be interesting to know, for example, whether the spectral gap coincides with the

mobility edge [23] and whether the tail of the spectral density below ZAmsea does

in fact disappear in the infinite-volume limit.
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Table 3. Median and width of the gap distributions in the improved theory

Run µ̄ σ µ̄ − ZAmsea 〈∆〉

D1 57.3(6) 3.3(4) −6.5(10) 2.48(12)

D2 32.0(3) 2.79(24) −4.8(6) 2.39(7)

D3 21.4(3) 2.84(23) −2.3(4) 2.29(7)

D4 15.9(3) 2.33(18) −2.1(3) 2.23(6)

D5 12.9(4) 1.99(15) −1.4(4) 2.28(5)

E2 30.3(3) 2.58(19) −6.6(6) 1.69(8)

E3 21.3(3) 2.31(19) −5.8(5) 1.52(7)

All entries are given in MeV

3.2 Accessible range of pion masses on the D and E lattices

When the sea-quark mass decreases, the gap distribution becomes sharper and moves

closer to the origin. Eventually the probability for exceptionally small eigenvalues

is not completely negligible anymore and one may run into algorithmic instabilities.

We have not reached this point yet and consequently cannot say in which way the

DD-HMC simulations will be affected. However, in order to be on the safe side,

one may prefer to stay in the range of parameters where the gap distribution is well

separated from the origin, i.e. where, say, the inequality µ̄ ≥ 3σ holds [20].

On a given lattice, this bound sets a lower limit on the accessible sea-quark masses

and thus on the masses Mπ of the pions (the lightest pseudo-scalar mesons made of

the sea quarks). Furthermore, if large finite-volume effects are to be avoided, the

bound MπL ≥ 3 (where L denotes the spatial lattice size) should better be respected

as well.

In the case of the D and E lattices, the range of pion masses where both conditions

are fulfilled can be determined explicitly, using our simulation results. An extra-

polation in the sea-quark mass is however still required, but it seems reasonable to

extrapolate µ̄ and M2
π linearly [9] and to assume that σ drops to values below 2 MeV

at small quark masses. For the accessible range of pion masses, we then obtain

Mπ ≥

{

314 MeV (D lattices),

270 MeV (E lattices),
(3.1)

where the limit is set by the constraint MπL ≥ 3 on the D lattices. This is not so on

8



A1 A2 A3 A4 B1 B2 B3 B4 C1

0.4

0.6

0.8

1

1.2

1.4

1.6
σ√ V /a

D1 D2 D3 D4 D5 E2 E3

σ√ V /a

Fig. 3. Width σ of the gap distributions, scaled by the factor
√

V /a, as obtained

in the unimproved (left) and the improved theory (right). The statistical errors were

determined using the bootstrap method.

the E lattices, but values of MπL as low as 3.4 can still be safely reached, i.e. also

in this case, the stability bound is not too restrictive.

3.3 Molecular-dynamics instabilities

Similar to the standard HMC algorithm, the DD-HMC algorithm obtains the next

field configuration by integrating the associated molecular-dynamics equations. The

numerical integration of these equations is well known to be potentially unstable.

If an instability occurs, the energy deficit ∆H at the end of the integration can be

large and the new field configuration is then normally rejected. The efficiency of the

simulation may thus be affected, but we wish to emphasize that large energy deficits

do not invalidate the algorithm unless the reversibility of the molecular-dynamics

integration is compromised.

Earlier studies of the phenomenon suggest that the instabilities are caused by ex-

ceptionally small eigenvalues of the lattice Dirac operator [24–26]. Even if the gap

distribution is safely separated from zero, it is possible that the Dirac operator de-

velops such eigenvalues somewhere along the molecular-dynamics trajectories. The

probability for this depends on how accurately the molecular-dynamics equations

are solved, i.e. on the integration step sizes and the solver residues.

In our simulations, the probability for |∆H| to be larger than 2 was always fairly

small and often equal to zero (runs B1 − B4, for example). The worst cases in the

unimproved and the improved theory were the runs A4 and D5 respectively, where

the threshold of 2 was passed by 1.4% and 0.7% of the trajectories. Energy deficits

|∆H| larger than 103 were never seen, but values above 100 did occur, although very

rarely so.
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4. Autocorrelation times

The dynamical properties of the simulation algorithms used in lattice QCD are still

largely unknown. It is not clear, for example, whether there are several relevant time

scales and how they depend on the lattice parameters and the chosen algorithm. We

shall not attempt to answer these difficult questions here, however, and merely give

an account of our empirical studies of the autocorrelations in the runs listed in

table 1.

4.1 Determination of autocorrelation times

Following the standard conventions, we define the integrated autocorrelation time

τint of an infinite series a1, a2, a3, . . . of measured values of an observable A through

τint =
1

2
+

∞∑

t=1

Γ(t)

Γ(0)
, (4.1)

where Γ(t) denotes the autocorrelation function of the series. In practice only a finite

number N of measurements can be made and the estimation of the autocorrelation

time from the available data then requires some ad hoc choices to be made.

For the autocorrelation function we use the approximation

Γ(t) ≃
1

N − t

N−t∑

i=1

(ai − ā−)(ai+t − ā+), 0 ≤ t < N, (4.2)

in which ā− and ā+ are, respectively, the averages of the first N − t and the last

N − t elements of the series a1, . . . , aN . The sum in eq. (4.1) is then truncated at

some value W ≪ N of the time lag t, referred to as the summation window, which

should ideally be such that the remainder of the sum can be safely neglected.

If the autocorrelation function is well behaved, as in the case shown in the upper

plot of fig. 4, the choice of the summation window is not critical and any reasonable

prescription will do. The rule adopted here is to stop the summation in eq. (4.1)

at the first value of t where the normalized autocorrelation function is equal to zero

within two times its statistical error, the latter being estimated using the Madras-

Sokal approximation (see appendix E of ref. [7]).

In practice the calculated autocorrelation functions may have long tails and they

may also vary significantly with the selected range of the data series. An example

illustrating this behaviour is shown in the lower plot in fig. 4. In all these cases, we
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Fig. 4. Normalized autocorrelation functions Γ(t)/Γ(0), plotted versus the time

lag t given in numbers of trajectories, of the plaquette P (upper plot) and the solver

iteration number NGCR (lower plot). The data shown were calculated using the last

4000 trajectories of run B2 (full points) or only the first 2000 of these (open points).

divide the data series into large bins, calculate the bin averages and estimate the sta-

tistical variance σ2 of the total average assuming these are statistically independent.

The integrated autocorrelation time is then given by

τint =
σ2

2σ2
0

, (4.3)

where σ0 denotes the naive statistical error. Evidently, the results obtained in this

way are rough estimates that could easily be wrong by factor 2 or so.

4.2 Reference autocorrelation times

The integrated autocorrelation times of the Wilson plaquette P and the GCR solver

iteration number NGCR are listed in table 4. These two quantities are unphysical,

but they are readily accessible and are useful reference cases that probe the dynamics

of the simulation at both short and long distances.

In order to facilitate the comparison of the figures quoted in the table, the auto-

correlation times were determined using data series of a fixed length equal to 4000

trajectories. The autocorrelation times are given in numbers of trajectories and er-

11



Table 4. Autocorrelation times of the plaquette P and the solver iteration number NGCR

Run τint[P ] τint[NGCR] Run τint[P ] τint[NGCR]

A1a 25(5) 43∗ C1 17(3) 35(7)

A1b 29(6) 38∗ D1 11(1) 10(2)

A2 23(4) 46∗ D2 17(3) 21(4)

A3a 14(2) 53(10) D3 16(2) 19(3)

A3b 28∗ 53∗ D4 16(2) 15(2)

A4 19(4) 45∗ D5 32(6) 24(5)

B1 14(2) 50∗ E1 33∗ 14(3)

B2 12(2) 39∗ E2 19(3) 11(2)

B3 9(1) 45∗ E3 27(5) 25(5)

B4 14(2) 51∗

∗ Estimate based on data binning

ror estimates are quoted only in those cases where the autocorrelation function was

well behaved. In these regular situations, the binning method always gave consistent

results.

In all simulations of the improved theory, except for run E1 perhaps, the autocor-

relation times were safely determined and turned out to be reasonably small. This

was not so in the simulations of the unimproved theory, where the autocorrelation

function of the GCR iteration number typically had a tail similar to the one shown

in the lower plot in fig. 4. O(a) improvement thus appears to have the side-effect of

reducing the autocorrelation times.

The regularity of run C1 then remains unexplained, however, and the differences

in the autocorrelation times could actually also very well be related to the fact that

the physical volumes of the C1 − E3 lattices are larger, by a factor of two or more,

than the volumes of the other lattices. Presumably the size of the blocks, on which

the DD-HMC algorithm operates, matters as well, although the comparison of the

runs A1a and A1b does not suggest this to be so.

4.3 Autocorrelations of physical quantities

The meson masses and all other physical quantities were calculated after finishing

the simulations, using the generated ensembles of saved gauge-field configurations

(see table 1). A fairly large number of trajectories was skipped between successive
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saved configurations so that the statistical correlations in these sets of fields can be

expected to be small.

In order to find out whether the residual correlations are relevant for the de-

termination of the statistical errors, the basic two-point correlation functions were

averaged over small bins of successive configurations. The physical quantities were

then extracted from the binned data and their statistical errors were estimated using

the jackknife method (appendix A). If there were significant statistical correlations

in the data, the errors would increase with the bin size, but this was not the case

and we therefore concluded that it was safe to proceed without data binning.

5. Computation of meson masses and decay constants

The masses and matrix elements tabulated in appendix C were calculated using a

combination of methods, most of which being entirely standard by now. We consider

two valence quarks, labelled r and s, and study the vector and pseudo-scalar mesons

in the r̄s-channel. The masses of the valence quarks may be set to the sea-quark

mass, but we are also interested in the partially quenched situation where one of the

quark masses is different from the sea-quark mass.

5.1 Two-point correlation functions

The pseudo-scalar density, the axial current and the vector current in the r̄s-channel

are given by

P rs = r̄γ5s, Ars
µ = r̄γµγ5s, V rs

µ = r̄γµs. (5.1)

All masses and decay constants we are interested in were extracted from the two-

point functions

fPP(x0) = a3
∑

x1,x2,x3

〈P rs(x)P sr(0)〉 , (5.2)

fAP(x0) = a3
∑

x1,x2,x3

〈Ars
0 (x)P sr(0)〉 , (5.3)

fVV(x0) = a3
∑

x1,x2,x3

3∑

k=1

〈W rs
k (x)W sr

k (0)〉 , (5.4)
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where W rs
µ is a linear combination of the vector current V rs

µ and a Jacobi smeared

form of it [27], slightly tuned so as to suppress the high-energy intermediate states

in the two-point function.

The correlation functions were evaluated in the standard manner by first express-

ing them as an expectation value of a product of two quark propagators. These were

calculated by solving the lattice Dirac equation, using the Schwarz-preconditioned

GCR solver [6] and requiring the normalized residue of the solution to be less than

10−10. In order to reduce the statistical fluctuations, the results were averaged over

time-reflections and 5 distant source points in the case of the A and B runs and over

3 source points in the case of the D runs.

5.2 Masses and matrix elements

On a lattice of infinite time-like extent, and at large times x0, the correlation function

fPP(x0) is saturated by the one-particle pseudo-scalar meson state in the r̄s-channel.

If we denote the mass of the meson by MPS and the associated vacuum-to-meson

matrix element by GPS, the asymptotic form of the correlation function is

fPP(x0) = −
G2

PS

MPS
e−MPSx0 + . . . , (5.5)

where the ellipsis stands for a series of more rapidly decaying terms. The mass MV

of the r̄s vector meson may be defined similarly through the asymptotic behaviour

of the vector correlation function fVV(x0), but the definition requires further expla-

nation if the meson is unstable in infinite volume (see subsect. 5.6).

Next we note that the ratio

meff(x0) =
{

1
2 (∂0 + ∂∗0) fAP(x0) + cAa∂∗0∂0fPP(x0)

} /
fPP(x0) (5.6)

converges to a constant mrs at large times x0, for any fixed value of the parameter

cA, because both fAP(x0) and fPP(x0) are proportional to e−MPSx0 in this limit.

Moreover, in the continuum limit, meff(x0) is expected to converge to the sum of

the bare current-quark masses of the r and the s quark, at all times x0, with a rate

proportional to a in the unimproved theory (where we set cA to zero) or a2 if the

improvement coefficients csw and cA are properly tuned [17,28,29] †.

All our numerical data for meff(x0) in fact turned out to be statistically consis-

tent with a constant value, over a large range of x0, and the quark mass sum mrs

† The effects of the 1 + O(am) renormalization factors (C.2) are expected to be small in practice

and are neglected here for simplicity.
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was therefore always unambiguously and accurately determined. In particular, the

current-quark mass msea = 1
2mrr of the sea quarks is obtained by setting the hop-

ping parameters of the valence quarks to κsea. Whether in general mrs coincides

with 1
2 (mrr + mss), as one expects to be the case if the lattice effects are small, is

a question to which we shall return in sect. 6.

The bare pseudo-scalar decay constant FPS in the r̄s-channel is normally extracted

from the asymptotic behaviour of the two-point functions fAP(x0) and fPP(x0). In

this paper, however, we first computed mrs, MPS and GPS and then used the formula

FPS =
mrs

M2
PS

GPS (5.7)

for the decay constant. Starting from eq. (5.6), it is straightforward to show that

equivalent results are obtained in this way, up to small corrections of O(a2). Note

that FPS is automatically O(a)-improved if mrs is.

5.3 Spectral decomposition in finite volume

On a finite lattice with time-like extent T , the calculation of the pseudo-scalar and

vector meson masses requires some care and must address the issue of higher-states

contributions. This is, incidentally, not so in the case of the quark mass sum mrs,

which is expected to be independent of the lattice size up to lattice-spacing effects.

For 0 < x0 < T , the correlation function fPP(x0) (and similarly fVV(x0)) can be

expanded in a rapidly convergent series of the form

fPP(x0) = −
∞∑

i=0

∞∑

j=i

cijh(x0;Ei, Ej), (5.8)

h(t;E,E′) = exp{−Et − E′(T − t)} + exp{−E′t − E(T − t)}, (5.9)

where 0 = E0 < E1 < E2 < . . . are the intermediate-state energies and cij ≥ 0 the

associated spectral weights ‡. In the channel considered here, the lowest intermediate

state is the r̄s pseudo-scalar meson state at zero spatial momentum. Then come the

multi-meson scattering states and more and more complicated states as one moves

up the energy scale.

‡ Equation (5.8) assumes the existence of a positive hermitian transfer matrix which may not be

guaranteed in the improved theory. It seems likely to us, however, that a transfer matrix can still

be defined, as is the case in O(a2)-improved gauge theories [30], although complex energy values

and negative weights may occur at energies on the order of the cutoff scale 1/a.
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At large x0 and T , the dominant term in the series (5.8) is thus the one where Ei =

0 and Ej = MPS. Moreover, using the product inequality (B.3), the contributions of

all higher-energy states can be shown to be exponentially suppressed with respect to

this term. In practice their effects are seen in the simulation data only when either

x0 or T − x0 is not too large. The leading terms in this range are then

fPP(x0) = c0h(x0; 0,M0) + c1h(x0; 0,M1) + . . . , M0 = MPS, (5.10)

where M1 denotes the energy of the next-to-lowest state in the r̄s-channel (if the

spatial volume of the lattice is large enough, this will be a three-meson state with

all particles at rest).

Note that each term in the spectral series (5.8) decreases exponentially in the

range 0 ≤ x0 ≪ 1
2
T , with an exponent equal to Ej −Ei that can be as small as the

pseudo-scalar meson mass, for example, even if both Ei and Ej are not small. The

presence of such contributions complicates the analysis of the correlation functions

considerably unless the time-like extent T of the lattice is sufficiently large to strongly

suppress them. This condition was barely satisfied in the case of the run A4, which

is why we decided to discard it from the physics analysis (as already mentioned in

the first paper in this series).

5.4 Effective masses and matrix elements

Slightly departing from what is usually done, we define the effective pseudo-scalar

meson mass Meff(x0) in the r̄s-channel to be the value of M ≥ 0 where

h(x0 − a; 0,M)

h(x0; 0,M)
=

fPP(x0 − a)

fPP(x0)
. (5.11)

Using the results obtained in appendix B, it is not difficult to prove that this equation

has one and only one solution. Moreover, with this definition of the effective mass

it is guaranteed that Meff(x0) = MPS at large x0, up to exponentially small terms.

We then also introduce the effective matrix element

Geff (x0) =

{

−Meff(x0)
fPP(x0)

h(x0; 0,Meff (x0))

}1/2

, (5.12)

which converges to GPS in the large-time limit.

The asymptotic behaviour of the effective mass at large x0 and T can be worked
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out explicitly, starting from the spectral representation (5.10). Setting

ǫ(x0) =
c1h(x0; 0,M1)

c0h(x0; 0,M0)
, δ(x0) =

{

M
∂

∂M
ln h(x0; 0,M)

}

M=M0

, (5.13)

and going through a few lines of algebra, it is straightforward to derive the expansion

Meff(x0) = MPS

{

1 +
ǫ(x0) − ǫ(x0 − a)

δ(x0) − δ(x0 − a)
+ . . .

}

, (5.14)

where the ellipsis stands for terms that are exponentially small with respect to the

next-to-leading term. A similar formula,

Geff (x0) = GPS

{

1 + 1
2
ǫ(x0) + 1

2
(1 − δ(x0))

ǫ(x0) − ǫ(x0 − a)

δ(x0) − δ(x0 − a)
+ . . .

}

, (5.15)

is obtained in the case of the effective matrix element.

5.5 Fit procedures

From the point of view of the statistical error analysis, the correlation functions fPP,

fAP and fVV are the primary quantities, while the effective quark mass sums, meson

masses and matrix elements are functions of these. The statistical errors of all these

quantities tend to be strongly correlated. We took the correlations fully into account,

from the primary quantities to the final results, by propagating the errors using the

jackknife method (appendix A). In particular, fitted and interpolated values were

always considered to be functions of the input data, which allows their errors to be

calculated in the standard manner.

The quark mass sum, the pseudo-scalar meson masses and matrix elements, and

the masses of the vector mesons were all obtained by fitting the corresponding ef-

fective quantity Peff(x0) in a range t0 ≤ x0 ≤ t1 of time with the chosen fit function

Φ(x0). We performed correlated least-squares fits, where the values of the fit pa-

rameters were determined by minimizing

χ2 =

t1∑

x0,y0=t0

[Peff(x0) − Φ(x0)] (C
−1)x0y0

[Peff(y0) − Φ(y0)] , (5.16)

the matrix C being the statistical error covariance of Peff(t0), . . . , Peff (t1). The quark

mass sum mrs, for example, was computed by fitting meff(x0) to a constant as shown

in fig. 5a.
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Fig. 5. Sample plots illustrating the dependence on x0/a of the effective quark mass

sum (figure a), the pseudo-scalar mass and matrix element (figures b and c) and the

vector meson mass (figure d), all given in lattice units. The data points shown are

from run D4 and the valence quark masses were both set to the sea-quark mass in

this example. The solid lines are the fits discussed in the text.

In the case of the pseudo-scalar meson masses, we fitted the data with the asymp-

totic expression (5.14). We first calculated the mass Mπ of the pions, i.e. the mesons

made of the sea-quarks, by substituting M1 = 3Mπ for the energy of the next-higher

state (thus assuming the latter is a three-pion state with small interaction energy)

and adjusting Mπ and c1/c0 so as to minimize χ2. While the fit curves obtained in

this way represent the data very well, it should be noted that the fitted value of Mπ

is largely determined by the data at large times x0, where a fit to a constant would

give nearly the same results (see fig. 5b).

Once Mπ was determined, the mesons made of a sea quark and a valence quark

with a mass different from the sea quark were considered. Here we set M1 = MPS +

2Mπ and otherwise proceeded as in the degenerate case. Next the matrix elements

GPS were computed by fitting the data with the asymptotic expression (5.15), using

the same values of M1 as in the fits of the effective meson masses (fig. 5c). We did

not set c1/c0 to the previously computed values, but it turned out that the two fits
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gave consistent results for this parameter.

5.6 Energy spectrum in the vector channel

At small sea-quark masses, the vector mesons become resonances that decay into two

(or more) pseudo-scalar mesons. As was shown long ago [31], resonances give rise

to a characteristic volume-dependent pattern of the energy spectrum which allows

their masses and decay widths to be determined, in principle, from simulation data.

As before, we considered the channels where one or both of the r and s quarks

is a sea quark. Starting from the correlation functions fVV(x0), the lowest energy

MV in this channel was calculated by fitting the effective mass with the asymptotic

formula (5.14) (with MPS replaced by MV). For the lowest excited-state energy we

substituted

M1 = (M2
PS + k2)1/2 + (M2

π + k2)1/2, k = 2π/L, (5.17)

in this case, L being the spatial size of the lattice. Excellent fits were obtained with

this ansatz and MV was determined quite accurately on all lattices.

We refer to the energy values MV as the vector meson masses in this paper, even

in those cases where the meson is likely to become a resonance in the infinite volume

limit (we estimate this to be so at the lightest quark masses in each series of lattices

and perhaps at some of the second-to-lightest as well). This use of language is only

slightly incorrect, however, because in all our simulations MV turned out to be at

most 20% larger than MPS + Mπ and significantly smaller than M1, in which case

the true resonance energy is expected to be close to MV [31].

We finally note that the statistical errors in the vector channel tend to be larger

than those in the pseudo-scalar channel. The effect could be related to the resonance

character of the vector mesons and it is conceivable that a coupled channel analysis,

such as the one recently presented by Aoki et al. [32], will not only allow the vector

meson decays to be studied but may also help to reduce the statistical errors.

6. Quark-mass dependence in partially quenched QCD

The most important physical results of our simulations were already presented in

our first paper in this series [9]. We now discuss the dependence of the quantities

tabulated in appendix C on the quark masses in some further detail, focusing on the

empirical facts rather than on their possible theoretical interpretation.
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Fig. 6. Results for the ratio Rπ and the difference Rπ − RPS obtained on the D-

series of lattices. The solid lines represent the global linear fit (6.2). Note that the

points in the lower plot do not have to line up within errors, since Rπ − RPS is a

function of two independent variables rather than of msea − mval alone.

As before we set msea = 1
2
mrr if the r quark is a sea quark and we now also set

mval = 1
2mss if the s quark is a valence quark. The figures in the tables are all for

the mixed case, where one quark is a sea quark and the other a valence quark. We

are thus considering partially quenched QCD with 2 + 1 flavours of quarks.

6.1 Quark and pseudo-scalar meson masses

We first remark that the quark mass sum mrs turns out to be equal to msea + mval

within statistical errors, on all lattices and for all quark-mass combinations. The

ratio mrs/(msea + mval) is obtained with better statistical precision than the quark

masses, but the largest deviation seen in this case is only 0.6%. The additivity of

the current quark masses (which is an exact property of the theory in the continuum

limit) is thus accurately guaranteed on the lattices that we have simulated.
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Fig. 7. Dependence of the bare pion decay constant Fπ = FPS|mval=msea
and of the

difference Fπ − FPS on the quark masses, as determined on the D-series of lattices.

The solid lines represent the global linear fit (6.3).

Next we consider the ratios

RPS =
M2

PS

msea + mval
, Rπ = RPS|mval=msea

=
M2

π

2msea
, (6.1)

which are independent of the quark masses to lowest order of chiral perturbation the-

ory. However, this is not so at next-to-leading order and the numerically calculated

ratios are in fact weakly mass-dependent (see fig. 6). An empirical fit

RPS = a0 + a1(msea + mval) + a2msea (6.2)

represents the data quite well in the given range of masses except perhaps for the

points where mval ≪ msea. In the case of the D-series of lattices, for example, the

data for RPS deviate from the fit by no more than 2% and most points are within a

margin of 1%.
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6.2 Pseudo-scalar decay constant and vector meson mass

As can be seen from the tables in appendix C, the calculated values of FPS/MV are

nearly independent of the quark masses. This comes a bit as a surprise, and could

merely be an accidental agreement in a limited range of masses, since there does

not appear to be any obvious physical connection between the pseudo-scalar decay

constant and the vector meson mass.

The mass dependence of these two quantities is thus practically the same and it

suffices to consider one of them. Focusing on the decay constant, a simple linear

expression,

FPS = b0 + b1(msea + mval) + b2msea, (6.3)

turns out to fit the available data for FPS very well. On the D-series of lattices, for

example, the fit matches the data within statistical errors and the maximal relative

deviation in the given range of masses is only 1.6% (see fig. 7).

It is tempting to use these fits to extrapolate the decay constant to the chiral limit,

but as already emphasized in our previous paper [9], such extrapolations are difficult

to justify and asymptotically inconsistent with one-loop chiral perturbation theory.

On the other hand, the observed linearity of the pseudo-scalar decay constant in

the range of masses covered by the simulations is striking and calls for a theoretical

explanation.

7. Concluding remarks

Numerical lattice QCD is currently in an interesting transition phase. The valence

approximation is now practically overcome, but important physical effects of the

light sea quarks, such as the decay of the rho meson or the anomaly-driven mass

splitting between the eta and the pions, still have not or only barely been studied

directly. Simulations at smaller quark masses and on larger lattices than reported

here will probably be required for this. Our experience however suggests that the

prospects for such simulations, using O(a)-improved Wilson quarks, are now quite

good.

So far the DD-HMC algorithm performed well and we did not run into any instabil-

ities or other technical difficulties. As one moves to smaller quark masses and smaller

lattice spacings, there may be some room for further algorithmic improvements, but
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the development of variance-reduction methods is likely to be more rewarding at

this point, particularly so if disconnected quark-line diagrams and multi-particle

amplitudes are to be computed.

The numerical simulations were performed on PC clusters at CERN, the Centro

Enrico Fermi, the Institut für Theoretische Physik der Universität Bern (with a con-

tribution from the Schweizerischer Nationalfonds) and on a CRAY XT3 at the Swiss

National Supercomputing Centre (CSCS). We are grateful to all these institutions

for the continuous support given to this project.

Appendix A. Statistical error analysis

In the physics analysis of the runs A1 − A3, B1 − B4 and D1 − D5, we kept track

of the statistical errors using the jackknife method. In particular, any correlations

among the errors of different observables were always properly taken into account.

Here we summarize our conventions and briefly explain the basic procedures that

we used.

A.1 Jackknife samples

Let Ar, r = 1, . . . , R, be a set of primary stochastic observables and ar,1, . . . , ar,N a

sequence of N measured values of these. In lattice QCD the most common primary

observables are the Wilson loops and sums of products of quark propagators. The

jackknife method assumes that the measured values are unbiased and statistically

independent. We shall thus take it for granted that the residual autocorrelations are

negligible in the cases of interest (see sect. 4).

The averages ār of the observables Ar and the associated statistical error covari-

ance Crs are given by

ār =
1

N

N∑

i=1

ar,i, (A.1)

Crs =
1

N(N − 1)

N∑

i=1

(ar,i − ār) (as,i − ās) . (A.2)

If we introduce the jackknife samples

aJ
r,i = ār + cN (ār − ar,i) , cN = (N(N − 1))

−1/2
, (A.3)
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an equivalent expression for the error matrix is

Crs =

N∑

i=1

(
aJ

r,i − ār

) (
aJ

s,i − ās

)
. (A.4)

Note that our definition of the jackknife samples slightly departs from the standard

conventions, where cN = 1/(N − 1). The modification is numerically insignificant

in practice, but leads to some simplifications when data from different simulations

are to be combined (see subsect. A.3).

A.2 Error propagation

Apart from estimating the primary observables, one may be interested in evaluating

various functions f(A1, . . . , AR) of them, which may involve fit procedures and other

complicated operations. The standard stochastic estimate of such an observable is

f̄ = f(ā1, . . . , āR) (A.5)

and the associated series of jackknife estimates is defined by

fJ
i = f(āJ

1,i, . . . , ā
J
R,i), i = 1, . . . , N. (A.6)

A little algebra then shows that the expression

σ2 =

N∑

i=1

(
fJ

i − f̄
)2

(A.7)

provides an estimate of the statistical variance of f̄ , which coincides with the usual

error propagation formula (the one that involves the gradient of f) up to terms of

order 1/N . Similarly the error covariance of f and any other function g is obtained

by summing (fJ
i − f̄)(gJ

i − ḡ) over the jackknife samples.

In practice the error formula (A.7) proves to be very convenient. If an observable is

a function of previously calculated observables, for example, one can take advantage

of the fact that the composition of functions is associative, i.e. the jackknife series fJ
i

is simply obtained by inserting the jackknife series of the arguments, independently

of whether these are primary or not. The data analysis can thus proceed in steps,

starting from the primary observables and progressing to more and more complicated

observables.
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A.3 Combining data from different runs

Simulations of lattice QCD at different sea-quark masses, lattice spacings, etc., can

be assumed to be statistically independent. The statistical variance of any observable

that depends on data from several simulations is therefore the sum of the associated

partial variances. This rule can easily be accommodated in the jackknife analysis

by embedding the jackknife series of the observables in extended series that include

all simulations on which the observable depends.

The method is best explained by considering two simulations, where N1 measure-

ments of some observables Ar are made in the first and N2 measurements of some

other observables Bs in the second. The associated jackknife series aJ
r,1, . . . , a

J
r,N1

and bJ
s,1, . . . , b

J
s,N2

are then computed as before, starting from the primary observ-

ables in each simulation. Next they are embedded in extended series

aJ
r,1, . . . , a

J
r,N1

, ār, . . . , ār
︸ ︷︷ ︸

N2 elements

and b̄s, . . . , b̄s
︸ ︷︷ ︸

N1 elements

bJ
s,1, . . . , b

J
s,N2

(A.8)

of length N1 + N2 such that the first N1 elements are occupied by the jackknife

series from the first simulation and the last N2 elements by those from the second

simulation.

With this assignment, and if the extended series are treated as ordinary jackknife

series, the correct error correlation matrix of the full set A1, . . . , AR, B1, . . . , BS of

observables is obtained. Moreover, we may define the jackknife series of any ob-

servable f(A1, . . . AR, B1, . . . , BS) in the standard manner and compute its variance

using eq. (A.7). The embedding trick thus allows the statistical errors to be propa-

gated as if there were a single simulation.

Appendix B. Properties of the auxiliary function h(t;E,E′)

The symmetry properties

h(t;E,E′) = h(T − t;E,E′) = h(t;E′, E) (B.1)

are an immediate consequence of the definition (5.9) of the function h(t;E,E′). It

is also straightforward to verify that

h(t;E,E′) = 2e−
1

2
(E+E′)T cosh

(
1
2 (E′ − E)(T − 2t)

)
, (B.2)
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and h(t;E,E′) is thus a convex function of t which attains its minimum at t = 1
2
T .

B.1 Product inequality

We now show that the inequality

h(t;E,E′ + E′′) ≤ h(t;E,E′)h(t; 0, E′′) (B.3)

holds for all values of the arguments t, E, E′ and E′′. To this end, first note that

cosh(α + β) ≤ cosh(α + β) + cosh(α − β) = 2 cosh α cosh β. (B.4)

Substituting α = 1
2 (E′ − E)(T − 2t) and β = 1

2E′′(T − 2t), this inequality becomes

cosh
(

1
2
(E′ + E′′ − E)(T − 2t)

)
≤

2 cosh
(

1
2 (E′ − E)(T − 2t)

)
cosh

(
1
2E′′(T − 2t)

)
, (B.5)

which is easily seen to coincide with (B.3) after inserting the representation (B.2).

B.2 Monotonicity property

If t and s are in the range s < t ≤ 1
2T , and if M > 0, it follows from eq. (B.2) that

the ratio

r =
h(s; 0,M)

h(t; 0,M)
(B.6)

is greater than 1. A less obvious statement is that the ratio increases monotonically

from r = 1 to r = ∞ when M goes from zero to infinity.

In order to show this, we insert eq. (B.2) and work out the quotient

q =
r − 1

r + 1
= tanh

(
1
2M(t − s)

)
tanh

(
1
2M(T − t − s)

)
. (B.7)

In the specified range of t and s, the arguments of the hyperbolic functions in this

equation are non-negative and monotonically growing with M . The quotient thus

rises monotonically from 0 to 1 when M goes from zero to infinity, which proves our

claim, since r and q are monotonically related to each other.
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Appendix C. Tables of meson masses and decay constants

The simulation results tabulated in this appendix were obtained following the lines

of sect. 5. In all cases, the r quark was taken to be a sea quark, i.e. the associated

hopping parameter κr was set to κsea. The hopping parameter κs of the other quark,

on the other hand, ranged over 4 or 5 values, one of which being κsea.

For each series of runs, we quote the quark mass sums mrs, the pseudo-scalar

meson masses MPS and matrix elements GPS, and the vector meson masses MV, all

given in lattice units (tables 5, 7 and 9). Some combinations of these quantities are

printed in tables 6, 8 and 10. The errors given in brackets are statistical only.

If so desired, the quoted results can be converted to physical units by substituting

the estimates 0.0717(15), 0.0521(7) and 0.0784(10) fm for the spacings of the A, B

and D lattices [9]. The quark mass sums mrs, the matrix elements GPS and the

decay constants FPS then also need to be renormalized,

mrs → ZAZ−1
P mrs, GPS → ZPGPS, FPS → ZAFPS, (C.1)

where ZA and ZP denote the (mass-independent) renormalization constants of the

non-singlet axial current and density. Moreover, in order to guarantee the O(a) im-

provement of these quantities in the improved theory, the renormalization constants

must be modified according to

ZX → ZX

(
1 + b̄Xamsea + 1

2
b̃Xamrs

)
, (C.2)

with properly adjusted coefficients b̄X and b̃X [17,33] (the figures quoted in tables 9

and 10 include the contribution of the operator improvement term proportional to

cA but not the 1 + O(am) renormalization factors).
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Table 5. Results for mrs, MPS, GPS and MV (lattices A1 − A3)

Run κr κs amrs aMPS a2GPS aMV

A1 0.15750 0.15750 0.0548(5) 0.2726(19) 0.0881(12) 0.389(4)

0.15800 0.0472(6) 0.2536(19) 0.0859(12) 0.379(5)

0.15825 0.0434(6) 0.2438(20) 0.0848(13) 0.373(5)

0.15835 0.0419(6) 0.2398(21) 0.0844(13) 0.371(5)

A2 0.15800 0.15750 0.0359(3) 0.2137(18) 0.0703(12) 0.344(3)

0.15800 0.0285(3) 0.1913(19) 0.0682(13) 0.334(4)

0.15825 0.0249(3) 0.1790(21) 0.0671(14) 0.329(5)

0.15835 0.0235(3) 0.1738(22) 0.0666(15) 0.328(5)

A3 0.15825 0.15750 0.0281(4) 0.185(3) 0.0617(19) 0.327(5)

0.15800 0.0208(4) 0.160(3) 0.0599(22) 0.317(7)

0.15825 0.0172(4) 0.147(4) 0.0593(23) 0.312(8)

0.15835 0.0158(4) 0.141(4) 0.0592(24) 0.311(9)
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Table 6. Combinations of mrs, MPS, GPS and MV (lattices A1 − A3)

Run κr κs aM2
PS/mrs aFPS FPS/MV

A1 0.15750 0.15750 1.357(17) 0.0650(7) 0.1669(21)

0.15800 1.363(19) 0.0630(7) 0.1664(24)

0.15825 1.369(21) 0.0619(8) 0.166(3)

0.15835 1.372(22) 0.0615(8) 0.166(3)

A2 0.15800 0.15750 1.272(20) 0.0553(7) 0.161(3)

0.15800 1.282(25) 0.0532(7) 0.159(3)

0.15825 1.29(3) 0.0522(8) 0.159(3)

0.15835 1.29(3) 0.0518(8) 0.158(4)

A3 0.15825 0.15750 1.22(4) 0.0505(8) 0.154(3)

0.15800 1.23(5) 0.0486(10) 0.153(4)

0.15825 1.25(6) 0.0474(11) 0.152(5)

0.15835 1.26(7) 0.0469(12) 0.151(6)
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Table 7. Results for mrs, MPS, GPS and MV (lattices B1 − B4)

Run κr κs amrs aMPS a2GPS aMV

B1 0.15410 0.15410 0.03889(18) 0.1958(9) 0.0453(5) 0.2896(17)

0.15425 0.03631(18) 0.1892(9) 0.0447(5) 0.2858(17)

0.15440 0.03375(18) 0.1824(10) 0.0441(6) 0.2820(18)

0.15455 0.03120(18) 0.1754(10) 0.0435(6) 0.2782(19)

B2 0.15440 0.15410 0.02696(13) 0.1619(11) 0.0384(7) 0.2518(21)

0.15425 0.02440(14) 0.1546(12) 0.0379(7) 0.2475(22)

0.15440 0.02187(14) 0.1470(12) 0.0374(7) 0.2432(24)

0.15455 0.01935(14) 0.1391(13) 0.0370(8) 0.239(3)

B3 0.15455 0.15410 0.02185(12) 0.1416(12) 0.0333(7) 0.2418(24)

0.15425 0.01927(12) 0.1329(13) 0.0326(7) 0.238(3)

0.15440 0.01668(12) 0.1235(14) 0.0318(7) 0.233(3)

0.15455 0.01409(13) 0.1132(15) 0.0310(8) 0.230(3)

B4 0.15462 0.15410 0.02029(16) 0.1328(10) 0.0317(6) 0.237(3)

0.15425 0.01774(16) 0.1242(11) 0.0312(6) 0.233(3)

0.15440 0.01521(17) 0.1151(12) 0.0307(6) 0.229(3)

0.15455 0.01269(17) 0.1055(14) 0.0302(7) 0.224(4)

0.15462 0.01151(17) 0.1008(15) 0.0300(8) 0.223(4)
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Table 8. Combinations of mrs, MPS, GPS and MV (lattices B1 − B4)

Run κr κs aM2
PS/mrs aFPS FPS/MV

B1 0.15410 0.15410 0.986(7) 0.0460(4) 0.1587(17)

0.15425 0.986(8) 0.0453(4) 0.1586(18)

0.15440 0.986(8) 0.0447(4) 0.1585(19)

0.15455 0.986(9) 0.0441(5) 0.1584(20)

B2 0.15440 0.15410 0.973(14) 0.0395(4) 0.1567(19)

0.15425 0.979(15) 0.0387(4) 0.1562(20)

0.15440 0.988(17) 0.0379(4) 0.1556(21)

0.15455 1.000(19) 0.0370(4) 0.1549(23)

B3 0.15455 0.15410 0.918(15) 0.0363(3) 0.1502(21)

0.15425 0.916(17) 0.0356(4) 0.1497(23)

0.15440 0.914(19) 0.0348(4) 0.149(3)

0.15455 0.910(22) 0.0340(4) 0.148(3)

B4 0.15462 0.15410 0.869(13) 0.0365(4) 0.154(3)

0.15425 0.869(15) 0.0359(4) 0.154(3)

0.15440 0.871(18) 0.0352(5) 0.154(3)

0.15455 0.878(23) 0.0344(5) 0.153(4)

0.15462 0.88(3) 0.0340(6) 0.153(4)
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Table 9. Results for mrs, MPS, GPS and MV (lattices D1 − D5)

Run κr κs amrs aMPS a2GPS aMV

D1 0.13550 0.13550 0.06771(21) 0.3286(10) 0.1069(15) 0.464(3)

0.13590 0.05704(22) 0.3017(10) 0.1030(15) 0.447(3)

0.13610 0.05165(23) 0.2873(11) 0.1008(15) 0.438(3)

0.13620 0.04893(24) 0.2799(12) 0.0998(15) 0.434(4)

D2 0.13590 0.13550 0.04968(13) 0.2758(8) 0.0920(11) 0.4173(24)

0.13590 0.03914(14) 0.2461(9) 0.0891(11) 0.401(3)

0.13610 0.03383(14) 0.2301(9) 0.0880(12) 0.394(4)

0.13620 0.03112(15) 0.2218(10) 0.0878(13) 0.390(4)

D3 0.13610 0.13550 0.04092(14) 0.2440(10) 0.0811(12) 0.382(3)

0.13590 0.03041(14) 0.2110(11) 0.0780(13) 0.363(4)

0.13610 0.02514(15) 0.1929(12) 0.0766(14) 0.354(5)

0.13620 0.02249(15) 0.1832(13) 0.0760(15) 0.349(5)

D4 0.13620 0.13550 0.03728(14) 0.2335(11) 0.0813(11) 0.374(4)

0.13590 0.02686(15) 0.1993(12) 0.0785(12) 0.356(4)

0.13610 0.02168(15) 0.1800(13) 0.0771(13) 0.348(5)

0.13620 0.01909(15) 0.1695(14) 0.0765(13) 0.345(6)

D5 0.13625 0.13550 0.03474(13) 0.2249(11) 0.0784(13) 0.376(5)

0.13590 0.02428(13) 0.1881(11) 0.0747(14) 0.359(6)

0.13610 0.01910(13) 0.1672(13) 0.0729(15) 0.350(7)

0.13620 0.01651(14) 0.1559(14) 0.0722(16) 0.346(8)

0.13625 0.01522(14) 0.1499(15) 0.0719(17) 0.344(9)
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Table 10. Combinations of mrs, MPS, GPS and MV (lattices D1 − D5)

Run κr κs aM2
PS/mrs aFPS FPS/MV

D1 0.13550 0.13550 1.594(9) 0.0671(9) 0.1445(20)

0.13590 1.596(10) 0.0645(9) 0.1444(21)

0.13610 1.598(11) 0.0631(9) 0.1440(23)

0.13620 1.601(12) 0.0624(9) 0.1438(23)

D2 0.13590 0.13550 1.531(9) 0.0601(6) 0.1441(17)

0.13590 1.547(10) 0.0576(7) 0.1435(20)

0.13610 1.565(12) 0.0562(7) 0.1428(22)

0.13620 1.581(14) 0.0556(7) 0.1424(24)

D3 0.13610 0.13550 1.454(11) 0.0558(6) 0.1461(20)

0.13590 1.465(14) 0.0533(7) 0.1467(23)

0.13610 1.480(17) 0.0518(7) 0.146(3)

0.13620 1.492(19) 0.0510(8) 0.146(3)

D4 0.13620 0.13550 1.462(13) 0.0556(6) 0.1487(22)

0.13590 1.478(17) 0.0531(7) 0.149(3)

0.13610 1.494(20) 0.0516(7) 0.148(3)

0.13620 1.505(23) 0.0508(7) 0.147(3)

D5 0.13625 0.13550 1.456(15) 0.0539(8) 0.143(3)

0.13590 1.457(19) 0.0512(8) 0.143(3)

0.13610 1.464(24) 0.0498(8) 0.142(3)

0.13620 1.47(3) 0.0490(9) 0.142(4)

0.13625 1.48(3) 0.0487(9) 0.142(4)
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