18,835 research outputs found

    Healing Carbon Fiber/Polymer Composites by Resistive Heating

    Get PDF
    Interface is the key region which determines, to a great extent, the set of properties of all heterogeneous systems, including composite materials. We reported interface healing of carbon fiber reinforced thermoplastic composite material via resistive heating. The carbon fiber, T700 carbon fiber, with a resistivity of 1.66·10-3 Ω·cm was used as the heating element while the matrix is polyarylether sulfone with cardo. Micro-droplet experiment was used to study the interface strength before and after heating to determine the healing efficiency. The measurement shows (experimental results show) that resistive heating is an efficient way to heal cracks near interface. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3527

    Porous Graphitic Carbon Nitride Nanosheets by Pre-polymerization for Enhanced Hydrogen Evolution from Water Splitting under Solar Light

    Get PDF
    A facile and green method was developed to fabricate porous graphitic carbon nitride (g-C3N4) nanosheets by simple pre-polymerizing melamine. Porous structures were formed in polymerized g-C3N4 at 350∘C for 2h, which greatly enhanced the specifi  surface area and pore volume, resulting in superior photocatalytic evolution. The hydrogen evolution rate was 11.2 higher than that of bulk g-C3N4 under visible light. The porous structure not only provided abundant active catalytic sites and cross-plane diffusion channels to facilitate the charge and mass transportation, but also promoted the charge separation in the photocatalytic reaction. This g-C3N4 is suitable for mass-production to generate hydrogen from water splitting. Keywords: graphitic carbon nitride, photocatalytic, porous structures, prepolymerization, hydrogen evolution from water splittin

    Label Transfer from APOGEE to LAMOST: Precise Stellar Parameters for 450,000 LAMOST Giants

    Get PDF
    In this era of large-scale stellar spectroscopic surveys, measurements of stellar attributes ("labels," i.e. parameters and abundances) must be made precise and consistent across surveys. Here, we demonstrate that this can be achieved by a data-driven approach to spectral modeling. With The Cannon, we transfer information from the APOGEE survey to determine precise Teff, log g, [Fe/H], and [α\alpha/M] from the spectra of 450,000 LAMOST giants. The Cannon fits a predictive model for LAMOST spectra using 9952 stars observed in common between the two surveys, taking five labels from APOGEE DR12 as ground truth: Teff, log g, [Fe/H], [\alpha/M], and K-band extinction AkA_k. The model is then used to infer Teff, log g, [Fe/H], and [α\alpha/M] for 454,180 giants, 20% of the LAMOST DR2 stellar sample. These are the first [α\alpha/M] values for the full set of LAMOST giants, and the largest catalog of [α\alpha/M] for giant stars to date. Furthermore, these labels are by construction on the APOGEE label scale; for spectra with S/N > 50, cross-validation of the model yields typical uncertainties of 70K in Teff, 0.1 in log g, 0.1 in [Fe/H], and 0.04 in [α\alpha/M], values comparable to the broadly stated, conservative APOGEE DR12 uncertainties. Thus, by using "label transfer" to tie low-resolution (LAMOST R \sim 1800) spectra to the label scale of a much higher-resolution (APOGEE R \sim 22,500) survey, we substantially reduce the inconsistencies between labels measured by the individual survey pipelines. This demonstrates that label transfer with The Cannon can successfully bring different surveys onto the same physical scale.Comment: 27 pages, 14 figures. Accepted by ApJ on 16 Dec 2016, implementing suggestions from the referee reports. Associated code available at https://github.com/annayqho/TheCanno

    Nonsaturating magnetoresistance and nontrivial band topology of type-II Weyl semimetal NbIrTe4

    Full text link
    Weyl semimetals, characterized by nodal points in the bulk and Fermi arc states on the surface, have recently attracted extensive attention due to the potential application on low energy consumption electronic materials. In this report, the thermodynamic and transport properties of a theoretically predicted Weyl semimetal NbIrTe4 is measured in high magnetic fields up to 35 T and low temperatures down to 0.4 K. Remarkably, NbIrTe4 exhibits a nonsaturating transverse magnetoresistance which follows a power-law dependence in B. Low-field Hall measurements reveal that hole-like carriers dominate the transport for T >> 80 K, while the significant enhancement of electron mobilities with lowering T results in a non-negligible contribution from electron-like carriers which is responsible for the observed non-linear Hall resistivity at low T. The Shubnikov-de Haas oscillations of the Hall resistivity under high B give the light effective masses of charge carriers and the nontrivial Berry phase associated with Weyl fermions. Further first-principles calculations confirm the existence of 16 Weyl points located at kz = 0, ±\pm0.02 and ±\pm0.2 planes in the Brillouin zone.Comment: 5 figures, 1 tabl
    corecore