10,819 research outputs found

    Predictive protocol of flocks with small-world connection pattern

    Get PDF
    By introducing a predictive mechanism with small-world connections, we propose a new motion protocol for self-driven flocks. The small-world connections are implemented by randomly adding long-range interactions from the leader to a few distant agents, namely pseudo-leaders. The leader can directly affect the pseudo-leaders, thereby influencing all the other agents through them efficiently. Moreover, these pseudo-leaders are able to predict the leader's motion several steps ahead and use this information in decision making towards coherent flocking with more stable formation. It is shown that drastic improvement can be achieved in terms of both the consensus performance and the communication cost. From the industrial engineering point of view, the current protocol allows for a significant improvement in the cohesion and rigidity of the formation at a fairly low cost of adding a few long-range links embedded with predictive capabilities. Significantly, this work uncovers an important feature of flocks that predictive capability and long-range links can compensate for the insufficiency of each other. These conclusions are valid for both the attractive/repulsive swarm model and the Vicsek model.Comment: 10 pages, 12 figure

    Robust Optimization for Integrated Construction Scheduling and Multiscale Resource Allocation

    Get PDF
    This research investigates an integrated problem of construction scheduling and resource allocation. Inspired by complex construction practices, multi-time scale resources are considered for different length of terms, such as permanent staff and temporary workers. Differing from the common stochastic optimization problems, the resource price is supposed to be an uncertain parameter of which probability distribution is unknown, but observed data is given. Hence, the problem here is called Data-Driven Construction Scheduling and Multiscale Resource Allocation Problem (DD-CS&MRAP). Based on likelihood robust optimization, a multiobjective programming is developed where project completion time and expected resource cost are minimized simultaneously. To solve the problem efficiently, a double-layer metaheuristic comprised of Multiple Objective Particle Swarm Optimization (MOPSO) and interior point method named MOPSO-interior point algorithm is designed. The new solution presentation scheme and decoding process are developed. Finally, a construction case is used to validate the proposed method. The experimental results indicate that the MOPSO-interior point algorithm can reduce resource cost and improve the efficiency of resource utilization

    Vector Quantized Semantic Communication System

    Get PDF

    Phylogeographic patterns and conservation implications of the endangered Chinese giant salamander

    Get PDF
    Understanding genetic diversity patterns of endangered species is an important premise for biodiversity conservation. The critically endangered salamander Andrias davidianus, endemic to central and southern mainland in China, has suffered from sharp range and population size declines over the past three decades. However, the levels and patterns of genetic diversity of A. davidianus populations in wild remain poorly understood. Herein, we explore the levels and phylogeographic patterns of genetic diversity of wild-caught A. davidianus using larvae and adult collection with the aid of sequence variation in (a) the mitochondrial DNA (mtDNA) fragments (n = 320 individuals; 33 localities), (b) 19 whole mtDNA genomes, and (c) nuclear recombinase activating gene 2 (RAG2; n = 88 individuals; 19 localities). Phylogenetic analyses based on mtDNA datasets uncovered seven divergent mitochondrial clades (A-G), which likely originated in association with the uplifting of mountains during the Late Miocene, specific habitat requirements, barriers including mountains and drainages and lower dispersal ability. The distributions of clades were geographic partitioned and confined in neighboring regions. Furthermore, we discovered some mountains, rivers, and provinces harbored more than one clades. RAG2 analyses revealed no obvious geographic patterns among the five alleles detected. Our study depicts a relatively intact distribution map of A. davidianus clades in natural species range and provides important knowledge that can be used to improve monitoring programs and develop a conservation strategy for this critically endangered organism.Peer reviewe
    corecore