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This research investigates an integrated problem of construction scheduling and resource allocation. Inspired by complex
construction practices, multi-time scale resources are considered for different length of terms, such as permanent staff and
temporary workers. Differing from the common stochastic optimization problems, the resource price is supposed to be an
uncertain parameter of which probability distribution is unknown, but observed data is given. Hence, the problem here is called
Data-Driven Construction Scheduling and Multiscale Resource Allocation Problem (DD-CS&MRAP). Based on likelihood
robust optimization, a multiobjective programming is developed where project completion time and expected resource cost are
minimized simultaneously. To solve the problem efficiently, a double-layer metaheuristic comprised of Multiple Objective
Particle Swarm Optimization (MOPSO) and interior point method named MOPSO-interior point algorithm is designed. The
new solution presentation scheme and decoding process are developed. Finally, a construction case is used to validate the
proposed method. The experimental results indicate that the MOPSO-interior point algorithm can reduce resource cost and

improve the efficiency of resource utilization.

1. Introduction

Construction project scheduling needs allocating time and
resource to each construction activity subject to precedence
relations, deadline, and other constraints. Poor scheduling
is one of the common issues in the field of construction man-
agement [1]. Different project schedules lead to different
resource demand curves over time. Take a simple instance
in Figure 1, for example, two possible schedules that lead to
different resource demand curves as represented by the blue
dotted lines. Resource allocation plan would also lay
restraints on the realization of project schedule [2, 3]. If some
required resources are not available at that time, activities
would fail to be completed on time.

In a construction practice, the required resources, such
as manpower and equipment, often have two features.
First, these resources could be available in multiple periods
that are different in length called multi-time scale periods.
For example, there are permanent staff and temporary

employees. The former, also called long-term employees,
are available at all times during the project. By contrast, the
latter can be hired and only available in some short term.
Similarly, some equipment is purchased, but some other is
rented on a short-term basis. The second feature describes
that the price of resources often fluctuates with the market,
such as the price of equipment renting and human hiring.
This research investigates the problem called Data-
Driven Construction Scheduling and Multiscale Resource
Allocation Problem (DD-CS&MRAP). A construction pro-
ject consists of several activities with precedence relations.
Execution of each activity requires a certain amount of time
and resources. Resources can be available in multiple lengths
of terms, which are called multi-(time) scale resources. More-
over, the resource price is a stochastic variable of which the
distribution is unknown, only the observed data is given.
The research aims to determine the start time of each activity
and make a combined strategy of resource allocation in
multiscale terms for minimizing two objectives, namely,
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FIGURE 1: Simple instance.

(a) project completion time and (b) expected total resource
cost. A double-layer metaheuristic consisted of Multiple
Objective Particle Swarm Optimization (MOPSO), and
interior point method is proposed to solve DD-CS&MRAP
efficiently. The MOPSO is used at the external layer for
generating a set of feasible solution about project scheduling
plan and multiscale resource allocation plan, while the inte-
rior point method is used at the internal layer to determine
the worst probability distribution of resource price. Subse-
quently, a complex construction case is used to validate the
proposed metaheuristic.

The remainder is organized as follows. Section 2 articu-
lates the related studies and concepts. Section 3 introduces
the DD-CS&MRAP problem and the mathematical model.
Section 4 describes MOPSO-interior point metaheuristic.
Section 5 explains the validation of the proposed method.
Section 6 discusses and concludes the findings.

2. Related Studies

2.1. Construction Scheduling and Resource Allocation
Problem. Critical path method (CPM) is a widely used
method. It is a duration-driven method to cope with schedul-
ing problems where the required resources are abundant [4].
However, the limitation of the available resource makes it dif-
ficult for CPM. In a Resource-Constrained Project Schedul-
ing Problem (RCPSP), the total available resource is known
and fixed, namely, the optimal project scheduling plan is
solved under the limited resources to achieve the shortest
project goal [5]. Some project scheduling problems aim at
optimizing resource-related objectives, such as Resource
Levelling Problem (RLP) and Resource Investment Problem
(RIP). RLP takes into account the balance of resource usage
and makes the use of resources as balanced as possible within
the plan during project scheduling, which means that
resource requirements fluctuate as little as possible [6-8].
RIP performs project scheduling under the premise of meet-
ing deadline to achieve the minimum total resource cost
[9, 10], recently, towards multiskilled workers who have dif-
ferent skills at different speeds and costs. Javanmard et al.
[11] then combined the multiskilled project scheduling
problem with the RIP, which aims to obtain a parallel optimi-
zation strategy of project scheduling and skill’s recruitment.
Shahsavar et al. [12] combined RIP with the quantity dis-
count problem to reduce the resource costs.

The decision problem of resource optimization aims to
select and allocate resources rationally for completing the
project on schedule and within the budget. The project
resource optimization problem considers known condi-
tions such as schedule, time window, and space location
to formulate a resource optimization configuration plan,
such as equipment rental, equipment selection, and equip-
ment scheduling. Yeoh and Chua [13] investigated the crane
selection and locating plans in the multistage construction
and developed a four-dimensional scheduling model. K.
Kim and KJ. Kim [14] used a multiagent system simulation
method to simulate the project site and evaluate the equip-
ment scheduling solution. Guillén-Burguete et al. [15] used
the location information of active tasks and the transfer of
work equipment to develop an optimal equipment schedul-
ing model. Al Hattab et al. [16] investigated the near-real-
time optimization scheduling problem of tower cranes and
used the simulation model to perform metaheuristic algo-
rithms which identified possible collisions.

In fact, the resource allocation plan often affects the pro-
ject’s progress. Unreasonable allocation of resources often
results in resource bottlenecks, making it difficult to imple-
ment project activities as planned, which eventually leads to
project delays. Project schedule also determines the resource
allocation plan. A reasonable project scheduling plan can
shorten the construction period and often improve the effi-
ciency of resource utilization to some extents. Therefore,
resource allocation problem and project scheduling problem
are closely related to each other. Some scholars have inte-
grated these two problems. Afshar-Nadjafi [17] investigated
the multimode project scheduling problem under the condi-
tion of decision making of recruitment and release for
resources. Tao et al. [18] investigated coupling project sched-
uling and resource flow allocation in repetitive projects con-
sidering site location and workspace congestion. Dong et al.
[19] took the feature of flexible resource renting and leasing
into project scheduling problem. The resource renting/leas-
ing price is effected by resource scarcity in the market. In this
research, we also investigate the integrated project scheduling
and resource allocation problem.

In construction practices, some huge equipment, such as
tower cranes, is frequently used. In order to avoid frequent
rent relinquishment, equipment suppliers often adjust the
lease price appropriately according to the length of the lease
period. For example, the longer the lease period, the lower
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the rental cost will be [20]. For human resource, a con-
struction often involves two types of workforce, namely,
permanent staff and temporary staff. Similarly, the prices
of these two types of employees are different. These phe-
nomena indicate that multiscale resources are common in
the construction field. However, most of the current related
studies are mostly resource allocation optimization problems
on a certain time scale and do not consider resources of mul-
tiple time scales and the corresponding different prices.
Based on this realistic background, this paper will study the
resource allocation problem with multiscale resources named
Multiscale Resource Allocation Problem (MRAP). It is
worth noting that the major difference between MRAP and
the classic resource allocation problems is that resources
(even if they are the same type) can be available in multiple
lengths of terms, such as short term, middle term, and long
term. The goal is to jointly allocate multiscale resources in
different time periods to meet resource requirements and
minimize costs.

Many studies have investigated project scheduling prob-
lems in deterministic environments. The parameters, such
as activity duration, human resource price, and resource
availability, have been determined in advance instead of fluc-
tuating. However, this is not realistic [21]. In order to get
closer to the reality, some scholars proposed stochastic
optimization or robust optimization for solving project
scheduling problems in uncertain environments. Recently,
Zheng et al. [22] dealt with the project scheduling problem
with stochastic duration from the two sides of the contract
to maximize net present value. A tabu search approach is
developed to solve the problem. Ji and Yao [23] proposed
a multiobjective project scheduling problem that considers
the uncertainty of activity duration and resource allocation
time. Genetic algorithm was used to solve the uncertain
project scheduling model to meet the minimization of total
cost. Tao et al. [24] investigated resource-constrained project
scheduling problem with hierarchical alternatives consider-
ing stochastic activity durations. A stochastic chance con-
straint was developed. The sampling average approximation
(SAA) and the population-based evolutionary artificial algae
algorithm (AAA) are integrated to solve the problem [24].
Robust RCPSP considers a variety of uncertainties such as
overtime or under expiration of activity duration and tempo-
rary shortage of resources [25]. Robustness refers to the
ability of the system to maintain normal operation when
there are uncertainties in the system, which is a solution
evaluated using the realization of the uncertainty that is
most unfavorable [26]. For the uncertainty of the activity
time, Bruni et al. [27] proposed an adaptive robust optimi-
zation model and deduced the decision to minimize the
worst case resource allocation under the polyhedral uncer-
tainty sets. In this research, the resource price is supposed
to be stochastic variable. Different from major existing liter-
atures, here, we suppose that the only observed data of
resource price is known. The likelihood robust optimization
is used to cope with the situation.

2.2. Related Concepts of Likelihood Robust Optimization. The
likelihood robust optimization is to cope with optimization

problems in an uncertain environment [28]. The distribu-
tion of the input parameter is unknown, but some
observed/historical data is given. The decision is then
made to optimize the expected objective value under the
worst-case distribution which makes the observed/histori-
cal data to achieve a certain level of likelihood y. The like-
lihood robust optimization can maintain robustness of the
solution for any statistically likely outcomes and also avoid
the overconservativeness.

Suppose & is a random variable taking values in a

given set B = (EI,EZ, ,/E\L). Independent @ samples of & is

observed with ¢, occurrences of E,. The likelihood robust
distribution set D(y) is defined as

L
DY) =p=(pp>---»p)| Y. ¢ logp 2y,
- (1)
L
Yp=Lp=ovi=1,..,L
=1

where p=(p,, ..., p;) represents the probability distribution

of & and p, is the probability of £ = /E\l. D(y) contains all prob-
ability distributions which make the observed data achieves
an empirical likelihood of at least exp (y), called likelihood
robust distribution set with likelihood level y.

Suppose that we attend to minimize an objective function
f(x, &) where x is the vector of decision variable with feasible

set V. The general likelihood robust optimization model can
be formulated.

minxe\y{ max ZPLf(X’ f) }, (2)
I=1

PEDA(y) 1=

where Y1 p,f(x, &) is the expected value of objective func-
tion. The likelihood robust optimization model makes deci-
sion on x to minimize the expected function under the
worst-case distribution in D(y).

According to the asymptotic analysis in the literature, an
appropriate likelihood threshold y can be computed by fol-
lowing (3) such that the likelihood robust distribution set
has a confidence level of 1 — a.

L
® 1
Y= Z‘Pl log é - EXi—l,l—zx’ (3)
=1

where y2_| | is the 1 — & quantile of a x* distribution with
1 — n degrees of freedom.

3. Problem Statement and Formulation

3.1. Problem Statement. In the DD-CS&MRAP, a construc-
tion project consists of a group of activities with precedence
relations. An AON (activity-on-node) network presentation
of the project is given, denoted as G={//, A} where /=
{0,1,2,...,n,n+ 1} represents the set of all activities and
0/1 matrix {A;} represents the finish-to-start precedence.
Let the activity 0 and #n + 1 be the dummy start and finish
activities of the project, respectively. Suppose that several
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FIGURE 2: Intervals of multiple time scale.

types of limited resources are available during the planning
horizon, such as labor crew and equipment. Execution of
each activity needs certain duration D; and resources R,,.
The dummy start and finish activities consume no resource
or time. In order to model the problem as an integer pro-
gramming, the planning horizon [0, T] is divided into a set
of regular time slots. The length of each slot is the smallest
unit of time, such as day and week. To allocate multiscale
resources as the distinct feature of DD-CS&MRAP problem,
the whole planning horizon is broken into several regular
time intervals based on each type of time scale. There is a
set of time scales S={1,...,S} which is numbered based
on the time interval length from the smallest to the larg-
est. For any one time scale s, there is a set of time inter-
vals &, that forms the whole planning horizon. For
example, Figure 2 illustrates different time scales and the
corresponding intervals. For the time scale 1, there is only
one interval, namely, planning horizon. For the time scale
2, there are three intervals, which are numbered by 1, 2,
and 3 in chronological order. In DD-CS&MRAP problem,
how to schedule activities (determine start time of each
activity) and allocate resources for each interval in each
time scale should be determined. The objective of project
scheduling is minimizing the project completion time as
well as resource cost. Since the prices of different time
scale resources are supposed to be uncertain, the multi-
scale resource allocation plan should be robust to mini-
mize the expected total cost.

3.2. Notations. Table 1 shows all related notations of the
model.

3.3. Mathematical Model. First, the uncertainty of the
resource price is not considered. Let &, be deterministic
scalar. The deterministic problem can be formulated as
the following biobjectives Linear Integer Programming
(LIP) [M1].

[M1] min F::(fTth)
st. f'= Zt VneLp @

teT

fe= Z (frs' Zzskr>’ (5)

seS,reR keP

s o) <Zenen v ©

teT teT
Qrt = Z Bskt *Zkr v, t, (7)
seS,keP;
t+D;-1

Z Z Rir Vi S Qrt vr, t, (8)

ieN 1=t
Q, <R, Vnt, (9)
fr=r, (10)
yitG{O,l} Vi, t, (11)
Zg, €Z5 Vs k1. (12)

The model is to minimize two objectives simultaneously:
project completion time f” and the total resource cost f, as
presented in objective vector F. Equation (4) describes that
the project completion time is the finish time of the finish
activity. Y.t -y, calculates the finish time of activity i.
Equation (5) shows that the total cost is the summation of
the cost of allocation resources in all time scale periods. Con-
straint (6) presents finish-start precedence relations among
the activities. Any one activity must not be started until all
of its predecessors have been finished. Equation (7) calculates
the total amount of resources allocated in time slot ¢, that
is, the sum of resource allocated in different time scale
intervals which contain time slot t. Constraint (8) means
that in any time slot f, the total amount of resources allo-
cated should be no less than the requirement. Constraint
(9) makes sure that the allocated resource does not exceed
the capacity R,. Constraint (10) guarantees that the pro-
cess of the project should be within the whole planning
horizon. Constraints (11) and (12) specify the feasible
ranges for the decision variables.

Further, &, is assumed to be random variable. The prob-
ability distribution of &, is unknown, but there is some
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TaBLE 1: Notations.

Set and indices

N={0,1,...,n+1} Set of activities topologically ordered and indexed by i, j
R={1,...,R} Set of resource types indexed by r

7 ={0,1,..., T} Set of time slots indexed by ¢

s={1,...,5} Set of time scales indexed by s

P.={1,...,P} Set of time intervals of scale s indexed by k

Parameters

A Adjacency matrix: if activity i is activity j's immediate predecessor, A;; = 1; otherwise, A;; =0
D; Duration of completing activity i

R, Quantity of resource r required when executing activity i

R, Capacity of resource r

By, €{0,1} If time slot  be in period k of scale s, By, = 1; otherwise, By, =0
&, The cost of input one unit of resource r for a period of time scale s
g, = (gs, )Zfs) Vector of possible values taken by &,, 1€ {1,..., L}

D, The number of total independent samples of &,

P, /EJ,S is observed with ¢/  occurrences

M An arbitrary big scalar

Variables

F Objective vector of the two objectives

fr Project completion time

fC Resource cost

y=uby: €{0,1}

= {Zskr}’ Zor € z'

If activity i is completed at the end of time slot ¢, x;, = 1; otherwise, 0

Zy, 1s the amount of resource r allocated in interval k of time scale s

Py ={pro > P} pl, is the probability of £, being £lr5, 0<pl <1
0={01},0,¢T 0, is the start time of activity i
Q. The total amount of resource r allocated in time slot ¢

observed data drawn from the distribution. &, takes values in

~1 AL A
set B,i= (&, ..., &,). &, is observed with ¢! occurrences.
There are @, independent samples. In [M1], random vari-

able &, only appears in objective function f€; therefore,
based on the general likelihood robust optimization model
introduced in Section 2, the whole likelihood robust optimi-
zation model for the DD-CS&MRAP problem is formulated
as following [M2].

[M2] min  F= (fT,ij)

St fczmax{ y (( y pgs’s\;)-(ZzSﬂ))},
seSreR \ \le{l, L} PEP;

(13)

L
Z ‘Plrs log pl,S 2y, Vs,

I=1

!
Prs

L
1
1 2
Yis = ;(Prs lOg Km - EXn—l,l—oc Vs, 1,

L
Zplrs =1 Vs,
I=1

(17)

subject to constraints (4), (6), (7), (8), (9), (10), (11),
and (12).

In [M2], p,,={pl....,pL} represents the distribution
of random variable &,.. Each element p!_ is the probability

0<pl. <1 Vs,

of &, being EZ,S. p,. is the decision variable that should be
determined to make the expected cost maximized (the worst)
as in objective (13). The likelihood robust distribution set of
each random variable &, is defined by constraints (14), (15),
(16), and (17). Constraint (14) makes the distribution achieve
a certain level of likelihood y,.. The value of y _ is calculated
based on (15), where 1 -« is the confidence level and
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Randomly generate nPop particles with position randomly real
valued in [0,1] and evaluate them.
Update the repository REP. Let the velocity be 0.

Return REP |—>< End )

—{ Determine domination and update REP.

Select the leader based on grids.

Update particle i by (20) and (21).

Convert each particle into AMK-list, decode into project
schedule and resource allocation plan, and compute project makespan.

i=i+1

- Inner layer: interior point method

Input resource allocation plan

Solve [M3] to compute the maximal expected resource cost.

F1GURE 3: Flowchart of MOPSO-interior point metaheuristic.

Xi_u_a is the 1 — a quantile of a x? distribution with 1-n
degrees of freedom. Constraints (16) and (17) specify the
feasible ranges for the distribution variables.

4. MOPSO-Interior Point Metaheuristic

4.1. Flowchart of MOPSO-Interior Point Algorithm. The like-
lihood robust optimization model [M2] of DD-CS&MRARP is
hard to solve directly due to the NP hardness as well as the
nonlinear constraint (14). So in this section, a metaheuristic
is proposed to cope with the problem. To lay the ground-
work, the model [M2] is analyzed further here. In fact,
[M2] consists of two nested submodels, the first model is to
make decision on project scheduling and resource allocation,
that is, determine decision variable (y, z), and the second one
is to decide the worst-case distribution p,,. Suppose that a
feasible solution (y,z), satisfying constraints (6), (7), (8),

(9), (10), (11), and (12), is given. The value of time objective
fT can be calculated easily. The rest problem is to solve the
inner optimization model composed by (13), (14), (15),
(16), and (17), which is defined as model [M3]. Model
[M3] is a convex continuous optimization thus can be solved
by some proven methods, such as interior point method, gra-
dient method, and SDP.

Following the above logic, a double-layer metaheuristic is
designed to solve DD-CS&MRAP problem as shown in
Figure 3. The MOPSO is used at the external layer to generate
a set of feasible solution consisting of two parts: project
scheduling plan and multiscale resource allocation plan. Pro-
ject completion time can also be computed. MOPSO is
selected because it is easy to implement and a large number
of experiments have proven that its performance is highly
competitive when comparing it against other multiobjective
evolutionary algorithms [29]. Then at the internal layer,
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interior point method is used to solve convex continuous
optimization model [M3] based on the resource allocation
plan and calculate the worst distribution and the maximal
expectation of resource cost. This metaheuristic is named as
the MOPSO-interior point method. The whole metaheuristic
returns a set of nondominated solutions stored in the final
repository REP.

The interior point method has been proven mature for
solving convex programming and can be realized directly
using some software system, such as MATLAB. Therefore,
it will not be discussed in detail in this article. Next, the solu-
tion representation and decoding method in MOPSO are
introduced, respectively.

4.2. MOPSO

4.2.1. Multiobjective Optimization. A general multiobjective
optimization problem can be defined in the following format.

Objective values f(x)=min {f,(x), f,(x), ..., fr(x)}
(k>2),

st g;(x)20 fori=1,...,m, (18)

hi(x)=0 fori=1,...,p, (19)

where the constraints given by (18) and (19) define the
feasible region S€R" and the vector of decision variables
x = (x,%,, ..., x,) belongs to S. The above objective values
involve k conflicting functions f, : R" — R that we want
to minimize simultaneously.

Definition 1 (Pareto dominance [29]). A solution x, €
dominates a solution x, € S (denoted by x,<x,) if and only
if f;(x,) is partially less than f,(x,).

Fix) <o) Vi=1,.. knfi(x) < fi(%), Fie{l,...,k}.

(20)

Definition 2 (Pareto optimality). A solution x* € S is Pareto
optimal if there exists no feasible solution x € S such that
X<x".

Without information of project manager’s preference, all
the Pareto optimal solutions are equally good. The purpose of
multiobjective optimization is to achieve the Pareto optimal
solution set rather than finding a single solution.

4.2.2. Particle Swarm Optimization. The particle swarm
optimization (PSO) algorithm is a population-based search
algorithm based on the simulation of the social behavior
of birds in a flock [30]. A particle is treated as a point in an
n-dimension space, and the status of a particle is character-
ized by its position and velocity. The POP, is the population
of particles in t generation. The n-dimension position of
the ith particle in the tth iteration can be denoted as x' =
{xi1,x2,...,x"}. Similarly, the velocity v'={vil,v? ...,
vin}. The particle-updating mechanism can be formulated
as below.

vi+1 = wvi +an (Plt - Xi) TG0 (Plr)g - Xi)> 1)

X=X V)
where w is the inertia weight of the particle influencing
the trade-off between the global and local experiences, ¢,

and ¢, are the learning factors, and r,7, € [0, 1] are ran-

dom values. p;? represents the global best position among
all particles achieved so far. p! is the local best position of
the ith particle encountered after ¢t —1 iterations. In the
PSO, the performance of each particle is measured by a
predefined fitness function, which is related to the problem
to be solved.

4.2.3. Multiobjective Particle Swarm Optimization. The PSO
can optimize the single-objective problem in a high speed
of convergence, which is very suitable for multiobjective opti-
mization problems. However, it is difficult to define the local
optimal solution and the global optimal solution in each gen-
eration when there is no absolute global optimization. There-
fore, the algorithm of the PSO is extended to handle the
multiobjective optimization problem by incorporating a
Pareto ranking scheme. The implementation steps of the
MOPSO are shown in Algorithm 1. First, we introduce sym-
bols and parameters involved in the algorithm: ¢ represents
generation index; MaxIt denotes the maximum number of
iterations; POP denotes the population; nRop denotes the
population size; REP represents the repository which stores
the nondominated particles’ position; nRep denotes the
repository size; nGrid means the number of Grids; alpha
means inflation rate; beta represents leader selection pres-
sure; gamma represents deletion selection pressure; and Var
min, Varmax defines the upper and lower limits of variables.

In the initial stage of the MOPSO, the initial population is
randomly generated and evaluated. The repository REP is
updated by function Update(POP,, REP), which selects and
stores nondominated particles from current population
POP, as well as REP. After that, MOPSO implements an iter-
ative process until the maximum number of iterations has
been reached. In each iteration, first of all, the grid is created.
In the repository, objective function space is divided into
many hypercubes and particles are located depending on its
objective function values by using these hypercubes as a coor-
dinate system. Then, population is updated based on above
particle-updating mechanism (Steps 9-10), where the global
best position p,?/leader is obtained using the hypercubes
and applying roulette wheel [29]. After that, the updated par-
ticle is bounded between the lower bound and upper bound,
in order to maintain the particles within the search space
(Steps 11-12). Then in Steps 14-18, p; which represents the
historic best position of particle i is updated depending on
the new position of particle x!,, and the last nondominated
(best) position p!. Finally, all particles in the new population
are evaluated and the repository REP is updated. Since the
size of the repository is limited, whenever it gets full, a sec-
ondary criterion will be applied, those particles located in less
populated areas of objective space are retained preferentially
over those lying in more densely populated regions. After all
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20. EvaluatePOP,

21. REP = Update(POP,, REP)
26. End While

27. Return REP

Input: MaxIt, nPop, nRep, w, ¢, ¢, nGrid, alpha, beta, gamma.
Output: Non-dominated solutions in repository (REP).

.REP=@; t=0; POP, = {x! |i={1,---,nPop}}; p =x}, vi =0,Yi= {1, ---, nPop};

Initialization:

1

2. Evaluate POP,

3. REP = Update(POP,, REP)

4. While t < MaxIt

S.t=t+1

6. G, = CreateGrid(REP, nGrid, alpha)
7. Fori=1:nPOP

8. p;Y = SelecLeader(REP, beta)

9. Vifl = w"; + C;ﬁ(Pi -x}) + 6 (pY —x})
10. X =X, +V)

1. xi,, =max (x,,, Varmin)

12. xi,, =min (x},,, Varmax)

13. Evaluate xj,

14. If x| dominates p!

15. Pi#—l = Xzt+1

16. Else

17. P =P

18. End If

19. End For

ArcoriTHM 1: MOPSO.

iterations are finished, the final output is the set of nondomi-
nated solutions stored in the final repository.

4.3. Solution Representation and Decoding Method. The
solution representation consists of three parts: (1) activity
list (A-list), AL={A,,...,A,,...,A,}, where any element
A, represents the order of activity i, A; € {1,...,n}; (2) list
of maximal resource supplied during the project process
(M-list), ML={M,,...,M,,...,Mp},0<M, <R, where
any element M, represents the maximum of resource r
supplied; and (3) list of ratio of resource amount (K-list)
KL={Ky 1> > Ky oo, Kg1p g}> Where 0<Kg, <1
can be decoded in to the amount of resource r allocated
in interval k of time scale s. It will be described later in
decoding process. It is worth noting that the last/smallest
time scale S and the corresponding intervals are not in
the K-list, because the amount of resource allocated in
the S time scale S intervals can be easily calculated when
the amount of resources allocated in 1 to S—1 time scale
periods are determined. As a result, the solution representa-
tion is the connection of above three types of lists, denoted
by AMK-list. Obviously, the length of the AMK-list is
Length e =7+ R+ (XessPs) - R.

However, since MOPSO is originally designed to solve
continuous optimization problem, we should map the
real-valued particles to the AMK-list at first. Each particle
of MOPSO is represented by vector X = (X, ..., X engmh, ., )>
x; €[0, 1]. Then, we need to convert each part of real-valued
elements into the A-list, M-list, and K-list, respectively. As

for the first n elements, (xy,...,x,), the smallest position
value (SPV) rule [31] is utilized by sorting x,, ..., x, from
the smallest to the largest and then the corresponding
rank is assigned for each activity according to its order.
As for (x,,1,...,%,,z), the maximum of resource r sup-
plied during the project process can be calculated by for-
mula M, =ROUND(R, +x,,,,, (R, —R,)), where (R,,R,)
are lower-upper bound of available resource and function
ROUND() rounds real number to the nearest integer. As
for remaining part of particle, since each element of K-list
is real number in [0,1], let the corresponding part in x equals
to K-list. Thus, any real-valued particle x can be mapped to
the ACM list.

An example is illustrated in Figure 4. There are four
activities which should be scheduled in planning horizon
[0,30]. There are three time scales as shown in Figure 2
in Section 3. The whole horizon [0,30] is of time scale 1
(long term). There are three intervals of time scale 2 (middle
term) and 6 intervals of time scale 3 (short term). The
problem involves only one type of resource with a capacity
of 10. Let (R,, R,) = (0, 10). The real-valued list is converted
into A-list=(1,3,2,4), M-list=(8), and K-list=(0.48, 0.95,
0.61, 0.13), respectively.

In order to translate the AMK-list into a feasible solu-
tion, a decoding process is developed. The decoding pro-
cess contains two parts, activity schedule and multiscale
resource allocation plan, which should be realized sequen-
tially. Notations that appears in the text below can be
referred to Table 1.
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FIGURE 4: Example of converting a particle into AMK-list.

Input: 6, KL={K,}, R,

ir> Di’Bskt
Initialization: A, =0,Vr, t, z4, =0, Vs, k,
1l: Forr=1:R Do
2: Fort=1:T Do
Fori=1:n Do
If0;<tand 0, + D; > t
Art = Art + Rir
End If
End For
8: End For
9: End For
10: A, = A, Vr,t
11: Fors=1:(S-1) Do
12: Fork=1:P, Do

3
4
5:
6
7

{Xrt =2
End For
: End For

t = Zskr | Bskt = 1},V1’

7

:Return z = {zy, }

Output: z = {z, }, zy, € Z*, amount of resource r allocated in interval k of time scale s

r

Zokr = Kskr . maxte{l,u-,T} {Xrt : Bskt}’ vr

Zskr = maxte{l,m,T}{Xrt ‘B }> Yk € {1, -+, P}, r

ALGorITHM 2: Pseudocode of Stage 2.

Stage 1 : Project schedule scheme. First of all, we schedule
activities with resource limitation and precedence con-
straints. The limitation of all types of resource is the M-list,
which is the maximal amount of resource supplied. Then,
the serial scheduling scheme (SSS) is applied as the common
decoding method for the RCPSP problem. The SSS assigns
the start time to each activity one by one with the principle
that activity with higher rank in the A-list be scheduled ear-
lier. For each activity, the start time is assigned without
exceeding the resource limitation. Otherwise, the start time
is pending until resource limitation is satisfied. Finally, stage
1 returns the start time of any activity i, denoted by 6 = {6, }.
Since the SSS has been extensively studied, we will not
describe it in detail. Interested readers are referred to related
literature of Zhang et al. [32].

Stage 2 . Multiscale resource allocation scheme. Based on the
project schedule 6 generated in Stage 1 and the K-list, a plan
of resource allocation in multiple time scales, denoted by
z={zy,} 24, € Z*, can be generated. The pseudocode of
Stage 2 is presented in Algorithm 2. Let A,, be the total
amount of resource r required in time slot f. First, we

calculate A,, by implementing Step 1 to Step 9 based on pro-
ject schedule 0 as well as the given parameter R;,. If 0; <t and
0, + D; > t, activity i is executing in time slot t and requires R;,
resource. Second, S — 1 cycles are conducted. In each cycle s,
the resource allocation plan for time scale s, that is, the
amount resource be allocated in each interval of time scale
s, is determined. Define variable A, as the remaining resources
that need to be allocated after s—1 cycles having being
conducted. A, is initialized to be A,,. In any cycle s, for
each interval k, zy, = K, - max,e(; ...y {A,; - By}, resource

r should be allocated. Then, update A, by abstracting the
amount of allocated resource, A, = A, — z;,.. Finally, for the
last time scale S, let zg, be max; ...y {A,, - Bg,} to meet
the remaining resource requirement.

In conclusion, by implementing the above two stages, the
AMK-list can be finally decoded into a feasible solution for
project scheduling and multiscale resource allocation.

Take the project instance in Figure 1, for example, to
demonstrate the decoding process. Time scales are set as in
Figure 2, and solution representation is the AMK-list in
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Figure 4. In Stage 1, the SSS translate the A-list into a sched-
ule by 4 cycles with resource capacity of 8 (M-list). Firstly,
activity 1 is selected because its rank is number 1. Let activity
1 start at time O for the duration of 25 and resource usage
of 4. Then, activity 3 is selected and scheduled at time 0
for the duration of 20, because resource supply is ade-
quate. After that, let activity 2 start at time 15, because
its resource requirement is 4 but the available resource
in interval [0,15] is inadequate, 8-4-2=2<4. Finally, let
activity 4 start at time 25. So far, the project schedule is
determined. The A, is also determined as the resource
requirement histogram as represented by the blue dotted
line in Figure 5. Then in Stage 2, the long-term (scale 1)
interval [0,30] is firstly allocated with ROUND(0.48 x 8) =
4 units of resource. The remaining unallocated resources
are updated by A, =, —4Vt. For time scale 2, allocate R
OUND(0.95 x 2) = 2, ROUND(0.61 x 4) =2, and ROUND
(0.13 x 3) =0 units of resource into the three middle term
intervals, [0,10], [10,20], and [20,30], respectively. Update
Xte[l 5,20 = 2> Xte[25,30] = 3. Atlast, for the short terms, resource

should be allocated to meet make up for resource shortage
(scale 3).

In sum, the feasible solution of DD-CS&MRAP includ-
ing project schedule and multiscale resource allocation
plan is obtained, as shown in Figure 5. The start time of
activity 1, 2, 3, and 4 are 0, 15, 0, and 25, respectively. 4
units of resource are allocated in the long-term period
[0,30], 2 units of resource are allocated in the middle-
term period [0,10] and [10,20], respectively, and 2 and 3
units of resource are allocated in the short-term period
[15, 20] and [25, 30], respectively.

5. Case Study

5.1. Computational Setup. A construction case is used to
validate the proposed metaheuristic. The project case con-
sists of 33 activities (except dummy start and finish activ-
ity) with precedence relations. The project network is
shown in Figure 6. The expected duration and resource
requirement (human resource) of each activity are given
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and also marked near the corresponding activity in the
network. There were two types of human resource to com-
ply with a more flexible approach of employment in the
project, namely, permanent staff and temporary staff.
Every permanent staff should participate the construction
from its start to finish (long term). The temporary staff
could be hired for day’s work (short term). The permanent
staff was paid by the month. Figure 7(a) illustrates the data
set of monthly salary for permanent staff. Temporary staft
was paid by the day, and the data set of daily salary was
shown in Figure 7(b). The integrated problem of construc-
tion scheduling and human resource allocation (including
long-term permanent staff allocation and short-term tempo-
rary staff allocation) needs to be solved. The planning hori-
zon is estimated at 800 days, and human resource capacity
is approximately 500.

All algorithms are coded and compiled in the MATLAB
R2016a. Experiments are conducted on a PC with Intel®
Core™ i5-5200U CPU @2.20GHz processor and 8 GB
RAM. The double-layer metaheuristic is performed based
on the parameter setting as shown in Table 2.

5.2. Results Analysis

5.2.1. Pareto Analysis. By conducting the double-layer
metaheuristic five times, five sets of nondominated solu-
tions are obtained. The average computing time is
1145.97 seconds. By gathering the nondominated solutions
and omitting the dominated, repeated, and closer solutions
from it, eight solutions are selected to approximate the
Pareto solution set. The Pareto optimal front is drawn in
Figure 8. It can be inferred that the project completion
time and resource cost are conflicting objectives. With
the project completion time increasing, the resource cost
tends to decrease. In particular, when the project comple-
tion time increases from 722 to 758, the resource cost has
a large slump. Each solution contains two plans. One is a
schedule of all activities represented by Gantt chart. As
shown in Figure 9, each grey bar represents an activity
process from the start to finish time. The other one is a
resource allocation plan as shown in Figure 10. The black
edge curve of the grey area represents the resource
demand curve over time, dotted blue curve represents
the total amount of labor allocated in every day, and bro-
ken red line represents the amount of permanent worker
allocated in the project. Thus, the amount of temporary
worker allocated in each day equals to the total amount
of labor minus the amount of permanent worker. That is
the gap between the broken red curve and the dotted blue
curve in Figure 10.

Any two solutions in the Pareto solution set are equally
good, because the multiobjective optimization takes no
regard of preference decision maker. The metaheuristic pro-
posed here just provides solution set, construction manager
can select a proper solution from it based on his/her prefer-
ence further. Among these trade-off solutions, solution with
objective value 675, 44.638 (named solution 1) and solution
with objective value 758, 39.004 (named solution 2) are
selected and a comparison was made.
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FIGURE 7: Histogram for the price data.

By referring to Figure 9, we can see that the activity prog-
ress bars of solution 2 are distributed evenly over time than
those of solution 1. The solution 1’s activity progress bars
are mainly distributed before 500 days. Solution 2 then has
alonger completion time, but with a smoother demand curve
than in solution 1 as illustrated in Figure 10. It can also be
observed that Figure 10(a) has a higher broken red line,
which means more permanent workers are allocated in solu-
tion 1. Besides, the area between dotted blue curve and bro-
ken red line is smaller, which means more temporary

workers are hired in solution 1. Since solution 1 requires
more manpower (permanent workers as well as temporary
workers), the total labor cost of solution 1 is higher. In fact,
there was no significant difference on cost of permanent
worker between solution 1 and solution 2, which are 37.682
and 37.010, respectively. It is because, although more perma-
nent worker inputting would lead to higher cost per month,
the project duration would be shorten which helps in reduc-
ing the total cost of hiring permanent workers. However, the
cost of temporary worker of solution 1 (6.956) is much more
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TABLE 2: Parameter setting of metaheuristic.
Number Symbol Description Value
1 MaxIt Maximum number of iterations 500
2 nPop Population size 20
3 nRep Repository size 50
4 w Inertia weight 0.5
5 o Personal learning coeflicient 1
6 o Global learning coefficient 2
7 nGrid  Number of grids per dimension 7
8 alpha Inflation rate 0.1
9 beta Leader selection pressure
10 gamma Deletion selection pressure
11 (R,.R,)  Upper-lower limits of resource (100, 500)
12 -« Confidence level 0.9

than solution 2 (1.994). Therefore, the temporary worker
allocation is the primary reason for cost gap between the
two solutions.

5.2.2. Comparison Multiscale Resource Allocation with
Single-Scale Resource Allocation. This comparison is con-
ducted to validate the multiscale resource allocation strategy
proposed in this study. The multiscale resource allocation
strategy is named as strategy 1, which is to allocate perma-
nent workers as well as temporary workers for the project.
There are two kinds of single-scale resource allocation strat-
egies. One is to allocate permanent workers only, which is
named as strategy 2. The other is to allocate temporary
workers only, which is named as strategy 3. We make a com-
parison of these three strategies.

We fix the project schedule plans of eight optimal solu-
tions in Pareto set. It means that the resource demand curve
over time for each solution is known. Then, we apply the
three resource allocation strategies to each project schedule.
We compare the three strategies from two aspects, resource
cost and resource utilization rate. Table 3 reports the total
cost of three strategies for each solution, the cost gaps,
and the average values. For each solution, the total labor
cost of strategy 1 is much less than that of strategy 2 and
considerably less than that of strategy 3. The average gap
between the strategy 1 and strategy 2 is 1.72 million yuan;
however, the average gap between strategy 1 and strategy
3 reaches as high as 21.37 million yuan. Table 4 reports
the resource utilization rate of strategy 1 and strategy 2
and their gaps. Resource utilization rate is the average per-
centage of labors that are working in total allocated labors
during the whole construction. Obviously, strategy 3 must
achieve 100% resource utilization rate and is therefore
omitted from the table. It can be observed that the utiliza-
tion rate of strategy 1 (average value is 76.0%) is higher
than that of strategy 2 (average value is 73.1%). The average
gap is 2.9%.

According to Tables 3 and 4, we can conclude that
strategy 1 is more flexible than strategy 2. By combining
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permanent labor assignment and temporary labor recruit-
ment, strategy 1 can save costs and improve the efficiency
of resource utilization. In addition, strategy 3 is quite flexible
that can eliminate idle labor, but its labor cost is too high.
Therefore, the strategy of multiscale resource allocation is
able to reduce cost and guarantee the resource utilization
efficiency to some extents.

5.2.3. Comparison of Different Confidence Level. This com-
parison is to explore the influence of confidence level 1 — a.
Let confidence level be 0.900, 0.950, 0.975, 0.990, and
0.995. Take solution 1 as the example, the model [M3] is
solved for achieving the probability distribution of labor
price under the worst-case distribution with each confidence
level. The distributions of permanent and temporary labor
price under different confidence levels are shown in
Figures 11(a) and 11(b), respectively. The probability distri-
bution of price gets worse when the confidence level
increases. For example, the probability of permanent labor
salary being the most expensive (i.e., 4.9) equals to 0.022,
0.119, 0.133, 0.147, 0.174, and 0.188 when confidence level
is at 0.900, 0.950, 0.975, 0.990, and 0.995, respectively. The
probability of the occurrence of worst situation grows mark-
edly when the confidence level increases. The expected cost
of labor employment increases with confidence level increase
as shown in Figure 12. Besides, the expected cost under fre-
quency distribution is much less. It means that solutions
under the higher confidence level could deal with the worse
situation of higher resource cost. In other words, the higher
the confidence level, the worse will be the case selected and
the more robust the solution will be. Therefore, decision
makers can adjust the confidence level, which is the parame-
ter of double-layer metaheuristic, based on the risk prefer-
ence to obtain the optimal solution with different levels of
robustness. For example, the higher confidence level should
be considered for more robust solutions, especially under
conservative or risk adverse situations.

6. Discussions and Conclusion

The paper focuses on construction scheduling and resource
allocation in an integrated framework. Multiscale resources
and uncertainty in resource price are two distinct features
in the problem. A multiobjective programming based on
likelihood robust optimization is modeled to optimize the
project completion time as well as the expected resource cost.
A double-layer MOPSO-interior point metaheuristic is
designed to solve the multiobjective optimization model.
The metaheuristic provides a set of optimal solutions that
make a trade-off between time and cost. It can be utilized
by decision makers based on their objective preferences in
all circumstances. Moreover, project managers also can for-
mulate project schedule and resource allocation plans based
on the project’s risk preference by tuning parameter of confi-
dence level in the metaheuristic. Finally, since the problem’s
distinct features are all inspired from practical constructions,
it would be very promising in construction applications.
The results of the case study have indicated that the method
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TasLE 3: Comparison of cost between multiscale and single-scale resource allocation strategy.

Solution number 1 2 3 4 5 6 7 8 Avg.
Strategy 1: allocate permanent and temporary workers ~ 44.64  39.00 44.06 38.62 3873 39.79 41.01 4433 4127
Strategy 2: allocate permanent workers only 4734 4033 4586 4040 40.57 4095 4245 46.01  42.99
Strategy 3: allocate temporary workers only 6297 6225 6346 6243 6211 6257 6191 6343  62.64
Gap between strategy 1 and strategy 2 2.71 1.33 1.81 1.78 1.85 1.16 1.45 1.67 1.72
Gap between strategy 1 and strategy 3 18.34 2324 1941 2380 2338 2278 2090 1910 21.37
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TaBLE 4: Comparison of resource utilization rate between multiscale and single-scale resource allocation strategy.

Solution number 1 2 3 4 5 6 7 8 Avg.

Strategy 1: allocate permanent and temporary workers ~ 0.728 ~ 0.811  0.720  0.827  0.812 0.807 0.760  0.714  0.760
0.655 0.769 0.678 0767 0.764 0.757 0.731 0.676 0.731

0.073  0.042  0.042 0.06 0.048 0.05 0.029  0.038  0.029

Strategy 2: allocate permanent workers only
Gap between strategy 1 and strategy 2
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FiGure 11: Distributions under different confidence levels.

outcomes under strict contractual requirements in tradi-
tional procurement system in terms of their fixed price pro-
visions, which do not depend on resources or time used in
the project. Moreover, uncertain market conditions would

proposed here can reduce resource cost as well as improve
efficiency of resource utilization.

Certain limitations need to be considered in using the
research findings. The proposed model would have different
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also affect the research findings. Future studies could be more
automatic and dynamic for resource allocation by capturing
the real-time data from the social-economic environment.
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