19,259 research outputs found

    Jet Noise Reduction: A Fresh Start

    Get PDF
    Attempts to reduce jet noise began some 70 years ago. In the literature, there have been many publications written on this topic. By now, it is common knowledge that jet noise consists of a number of components. They possess different spectral and radiation characteristics and are generated by different mechanisms. It appears then that one may aim at the suppression of the noise of a single component instead of trying to reduce jet noise overall. The objective of the present project is to reduce large turbulence structures noise. It is the most dominant noise component radiating in the downstream direction. A rational way to start is to determine the location of the source of this component. To supplement the information provided by past experiments, a fairly comprehensive study of the noise source location, the characteristic features of the sound pulses, the size and structure of its turbulence source is carried out. The results are reported here. In addition, a large turbulence structures noise reduction scheme is proposed. Work needed to perform a proof-of-concept demonstration by numerical simulation are discussed. View Video Presentation: https://doi.org/10.2514/6.2023-4519.vid

    Prospects for Higgs Searches via VBF at the LHC with the ATLAS Detector

    Full text link
    We report on the potential for the discovery of a Standard Model Higgs boson with the vector boson fusion mechanism in the mass range 115 with the ATLAS experiment at the LHC. Feasibility studies at hadron level followed by a fast detector simulation have been performed for H\to W^{(*)}W^{(*)}\to l^+l^-\sla{p_T}, H→γγH\to\gamma\gamma and H→ZZ→l+l−qqˉH\to ZZ\to l^+l^-q\bar{q}. The results obtained show a large discovery potential in the range 115. Results obtained with multivariate techniques are reported for a number of channels.Comment: 14 pages, 4 figures, contributed to 2003 Les Houches Workshop on Physics at TeV Colliders. Incorporated comments from ATLAS referee

    Parametric Instability of Supersonic Shear Layers Induced by Periodic Mach Waves

    Get PDF
    It is suggested that parametric instability can be induced in a confined supersonic shear layer by the use of a periodic Mach wave system generated by a wavy wall. The existence of such an instability solution is demonstrated computationally by solving the Floquet system of equations. The solution is constructed by means of a Fourier-Chebyshev expansion. Numerical convergence is assured by using a very large number of Fourier and Chebyshev basis functions. The computed growth rate of the induced flow instability is found to vary linearly with the amplitude of the mach waves when the amplitude is not excessively large. This ensures that the instability is, indeed, tied to the presence of the Mach waves. It is proposed that enhanced mixing of supersonic shear layers may be achieved by the use of such a periodic Mach wave system through the inducement of parametric instabilities in the flow. © 1991 American Institute of Physics

    Isospin effect in the statistical sequential decay

    Get PDF
    Isospin effect of the statistical emission fragments from the equilibrated source is investigated in the frame of statistical binary decay implemented into GEMINI code, isoscaling behavior is observed and the dependences of isoscaling parameters α\alpha and β\beta on emission fragment size, source size, source isospin asymmetry and excitation energies are studied. Results show that α\alpha and β\beta neither depends on light fragment size nor on source size. A good linear dependence of α\alpha and β\beta on the inverse of temperature TT is manifested and the relationship of α=4Csym[(Zs/As)12−(Zs/As)22]/T\alpha=4C_{sym}[(Z_{s}/A_{s})_{1}^{2}-(Z_{s}/A_{s})_{2}^{2}]/T and β=4Csym[(Ns/As)12−(Ns/As)22]/T\beta=4C_{sym}[(N_{s}/A_{s})_{1}^{2}-(N_{s}/A_{s})_{2}^{2}]/T from different isospin asymmetry sources are satisfied. The symmetry energy coefficient CsymC_{sym} extracted from simulation results is ∼\sim 23 MeV which includes both the volume and surface term contributions, of which the surface effect seems to play a significant role in the symmetry energy.Comment: 8 pages, 8 figures; A new substantially modified version which has been accepted by the Physical Review

    A Comparison of Quintessence and Nonlinear Born-Infeld Scalar Field Using Gold Supernova data

    Full text link
    We study the Non-Linear Born-Infeld(NLBI) scalar field model and quintessence model with two different potentials(V(ϕ)=−sϕV(\phi)=-s\phi and 1/2m2ϕ2{1/2}m^2\phi^2). We investigate the differences between those two models. We explore the equation of state parameter w and the evolution of scale factor a(t)a(t) in both NLBI scalar field and quintessence model. The present age of universe and the transition redshift are also obtained. We use the Gold dataset of 157 SN-Ia to constrain the parameters of the two models. All the results show that NLBI model is slightly superior to quintessence model.Comment: 17 pages, 10 figures, some references adde
    • …
    corecore