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Bunch lengthening (or shortening) caused by the potential well distortion and the microwave instability in electron
rings with negative momentum compaction factor is discussed in detail based on the resonator impedance model;
further, a comparison with rings of positive momentum compaction factor is given. It was found that the bunch
shape is less deformed and the current threshold of the microwave instability is higher in the rings with negative
momentum compaction factor over a very wide range of the impedance parameters. The results also show that
even within the range where the threshold for positive momentum compaction is higher than that for negative
momentum compaction, the bunch lengthening is still less serious in most cases. The main reason is that the beam
is less deformed by its own wake field, and some "negative feedback" mechanism plays an important role in rings
with negative momentum compaction factor. Finally, an example of bunch lengthening in the case ex <0 with a real
wake field of the old chamber of the SLC damping ring is given in contrast to the case in which ex >0.
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INTRODUCTION

The bunch length variation due to the microwave instability is a very interesting problem
for electron-positron colliders; 1 especially, in most of the existing low energy electron
positron colliders, a positive momentum compaction (a > 0) is usually adopted. Bunch
lengthening in such machines is one of the most important factors which limits the
luminosity performance and its upgrade.

The idea to understand the bunch lengthening phenomenon in rings with negative
momentum compaction factor (a < 0) was initiated by the desire to upgrade the luminosity
of BEPC (Beijing Electron Positron Collider).2 For further luminosity upgrading, several
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approaches were proposed, among which mini-t3 insertion was the most promising.
However, the crucial factor for the BEPC mini-t3 is the bunch length. At present, the average
maximum luminosity of BEPC is 6 x 1030cm2sec-1 at 2.0 GeV; the corresponding bunch
length according to the measurement is about 7-8 cm, which is about twice as large as the
calculated value (4.16 cm). In order to shorten the bunch length from 7 cm to ~ 3 cm, so as
to fit the requirement of a 3.6 cm mini-t3 configuration, by increasing the RF voltage from
1 MV to 2.4 MV, two more cavities, (provided by the CERN SPS division) have been added
to the BEPC ring. However, recent experimental results have shown that bunch shortening by
increasing the RF voltage is less than the value predicted by theory. According to the scaling
law of BEPC, obtained by the bunch length measurement,3 the bunch length is still about
4.5 cm at 2.0 GeV, 50 rnA, with a 2.4 MV RF voltage. Hence, finding a different approach
to shorten the bunch length becomes a very important issue. Using negative momentum
compaction is one of the hopeful approaches.4

In this paper, the method and computer program developed by K. Oide and K. Yokoya5

are used to study the longitudinal bunch behaviour. First, the equation of motion is
reviewed simply. Then, the potential well distortion (PWD) and the threshold of microwave
instabilities with a resonator impedance model for both the ex > 0 and ex < 0 cases are
discussed and compared in detail in the second and third sections. Finally, as an example,
bunch lengthening in a ring with a real wake field of the old chamber of the SLC damping
ring for ex > 0 and ex < 0 is demonstrated. Generally speaking, bunch lengthening is less
serious in rings with ex < O.

All of the above results will not only be beneficial in upgrading the luminosity of BEPC,
but will also be useful for future high-luminosity collider designing.

2 EQUATION

The canonical variables used are the nonnalized energy deviation (p = :e~) and nonnalized
longitudinal distance (q = -L) from the synchronous particle. Here, 1] is the slippage factor,

azo
azO the nns natural bunch length and aEO the r.m.s. natural energy spread.

The single particle motion is described by the Hamiltonian (H) as

00 00

H I 2 1 2 Iff W (' ") ( ")d lid I= "2 p +"2q - k,s N q - q p q qq.

q q'

(1)

Here, WN (q) is the nonnalized wake field, which is generated by the particles in the bunch,
and is equal to zero in the region q > 0 by causality. p (q) is the particle density in the
bunch, and Ik,s is the well-known dimensionless Keil-Schnell criterion parameter,

IRs
Ik,s = --2-(-E-) .

1]aEO e

I is the peak current, Rs the shunt impedance of a broad-band resonator, and ~ the nominal
beam energy in unit of Volts.
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The relation between the normalized longitudinal wake field (WN(q)) and the usual
wake-field (WII (q )) is

For a resonator wake field,

KKK
WN(q) = -exp(-q) sin(J4Q2 - l-q + tan- 1(J4Q2 - 1)), for Q > 0.5, q < O.

Q 2Q 2Q

Here, K = W r a~o , W r is the resonator frequency, and c is the speed of light. Thus, WII (q) is
fully determined by only two parameters, K and Q. The corresponding equations of motion
are:

(2)

(a)
dq _ aH _
ds - (fji - p

and
00

~~ = - ~~ = -q - h,s f WN(q - q')p(q')dq', (b)

q

where s = wsot, WsO is the unperturbed frequency of the synchrotron motion, and s is the
phase of the synchrotron motion. From Eq. (2), the following Vlasov equation is obtained:

00

a1fr a1fr a1fr a1fr ! I I I a a1fr- +p- - q- - Ik,s- WN(q - q )p(q )dq = 2Ao-(- + p1fr).
as aq ap ap ap ap

q

(3)

1fr = 1fr (p, q, s) is the distribution function in phase space (p, q), where AO = _1_, TO
TOWsO

being the radiation damping time and p(ql) = f 1fr(p, q')dp .
Splitting 1fr (p, q, s) into two parts,

1fr (p, q , s) = 1fro (p, q) + 1fr1 (p, q , s),

and ignoring the nonlinear terms in 1fr1, we obtain the following linearized Vlasov equation
for 1fr1:

(4)
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1/10 (p, q) is a stationary solution of the Haissinski equation,

00 00

a1/10 a1/10 a1/l0 f f / / / / /
Paq - q ap - Ik,s ap dp dq WN(q - q )1jJo(p , q ) = o.

q -00

(5)

By transforming (p, q) to action-angle variables (J, ¢ ),6 the Vlasov equation can be
finally rewritten as

- w(J) aa~l + h,s at/ a: I

J
f f U(q(J, </J) - q'(J', </J'))1jJl(J', </J', s)dJ'd</J'

J ¢

(6)

q

where, U(q) == J W(q)dq, w(J) is the incoherent synchrotron oscillation frequency
-00

spread and w (J) == a~ jJ) .
Eq. (6) is an integral equation with an intensity dependent term and a frequency spread

term on the right side, which are not easy to deal with. However, using the method and
computer program developed by K. Oide and K. Yokoya,5 one can easily obtain a numerical
solution; the convergence is good up to Ik,s r-v 20 for various Q and K < 2 of the resonator
impedance model.

3 POTENTIAL WELL DISTORTION

When the beam intensity is not sufficiently high, i.e., below the microwave threshold, the
bunch behaviour is determined by its own potential well field. The bunch shape is deformed
and its length is changed. A self-consistent solution of the bunch shape is found by applying
numerical integration of the Haissinski equation (5), or using the more general approach of
solving a truncated coupled set of non-linear equations.7 The results obtained by these two
methods agree well with the closed analytic form of the pure resistive impedance and the
pure inductive impedance for both the ex > 0 and ex < 0 cases.

For the resonator impedance model, the typical distribution of the particles in the bunch
vs current is given in the Figures l(a) and l(b) for Q == 1 and K == 1. One can see that the
cases ex > 0 and ex < 0 are quite different.

1. As usual, the bunch leans forward to compensate for the energy loss by the RF voltage
in the case ex > 0, and backward for ex < O.

2. The bunch shape is seriously distorted for ex > 0; for high intensity, sometimes two
peaks appear. However, it is less distorted for ex < O.

As indicated in Fig. 2, the reason is obvious: in the case ex > 0, most particles move to
the front part of the bunch; then, the wake field produced by them disturbs the tail part of
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FIGURE 1: Bunch shape (density distribution within the bunch) for various intensities. (In the case of ex <0, the
absolute value of Ik,s is indicated.)
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FIGURE 2: Relative location (the solid line) of the bunch and its wake field (the dashed line).
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FIGURE 3: Bunch length vs current, Q=1.
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the beam, and a large deformation occurs at the tail part at high intensity. However, in the
case a < 0, the situation is different: most particles move to the back of the bunch; since
the wake field generated by these particles is mostly located outside of the beam, only a
portion of the beam is disturbed. A calculation shows that two peaks never appear in the
a < 0 case, and that the beam always remains in good order.

Figure 2(b) shows that the minimum of the wake field is near to the second peak of the
bunch, and that it accelerates the tail part of the beam.

Another very interesting phenomenon is the bunch length variation vs the current
(Figures 3(a) and 3(b)).

Bunch lengthening is very serious in the case a > 0; at high intensity,a the lengthening
factor is between 1.45 to 1.65. However, it is between 1.05 to 1.25 for a < O. Although
Figures 3(a) and 3(b) are only for the case Q = 1, a similar phenomenon occurs for different
Q. This can be explained as follows.

For a long bunch (K > 1), in the case a > 0, the spectrum is mainly in the inductive
part of the impedance, which causes the bunch to lengthen and moves the spectrum even
further to the inductive part of the impedance. It is like a "positive feedback", which causes
the bunch length to increase exponentially with the intensity. However, in the case a < 0,
most of the spectrum of a long bunch is in the negative-inductive part of the impedance,
which causes the bunch to shrink, thus forming a "negative feedback". As a result, the bunch
length increase is nearly linear and very slight.

For a short bunch (K < 1) , the situation is similar in the case a < 0, in that most
of the spectrum of the short bunch overlaps with the negative-capacitive part of the
impedance, which causes bunch lengthening. The spectrum thus moves to the negative
inductive part of the impedance, which partly cancels the negative-capacitive part and a
"negative feedback" mechanism is formed, so that the lengthening becomes weaker. This
is why bunch lengthening of a short bunch is always mild, as shown in Figure 3(a), curve
"f\'. However, it is quite different in the case a > 0; it seems there should be a "positive
feedback" mechanism to push the bunch length so as to become shorter. However, it is
not true when the bunch is shortened to some extent; in this case the wake field generated
by the head part of the bunch is so strong that it causes a serious deformation of its tail
part. The bunch shortening is then stopped and lengthening starts. Once the bunch becomes
lengthened, "positive feedback" plays an important role, and the bunch length increases
even more significantly, due to the fact that the intensity is already very high at that time.
This can be seen from the curve "B" in Figure 3(b).

4 MICROWAVE INSTABILITY

Above the current threshold of the microwave instability, one can find a numerical solution
for the Vlasov equation (Eq. (6)) by putting the Haissinski solution (1/fo(J)) ofpotential well
distortion in it. The main results for the resonator impedance model with various parameters
are described as follows:

a For example, Ik,s=16 corresponds to 40 mA for BEPC
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1. In the case ex < 0, the mechanism of microwave instabilities is mainly due to radial
mode coupling within a single azimuthal band; in the case that ex > 0, however, besides
the radial mode coupling belonging to the same azimuthal band, instabilities are sometimes
excited by the combined function of radial and azimuthal mode coupling. The reason can
be explained qualitatively. Let's expand 0/1 (1, ¢, s) in terms of eigenfunctions:

m=oo
'III' (1 ~) ~ Rm(l)eim¢ . e-iQs .'1-'1 ,t.p,s = ~

m=-oo,m#O
(7)

Here, m is the number of azimuthal modes and Q = ::::0 is the coherent frequency in units

of WsO. Substituting Eq. (7) into Eq. (6) and multiplying by e-im¢ on both sides and then
integrating over ¢, we obtain

-i(Q - m)Rm(J) - imh,s aaVr/ f L Gmmt(J, 1')Rmt(J')dJ' = O. (8)
m'

In order to discuss only the azimuthal mode, the dependence of w(l) on 1 and the
corresponding radial mode can be neglected; thus, we take w(l) = 1, i.e., without any
frequency spread. The radiation damping term in Eq. (6) is also neglected for simplicity.
Here,

1 1 . ¢ 1 I· I ¢'
Gmmt(J, 1') = 2Jr r dc/Je-lm r dc/J elm U(q(J, c/J) - q(J', c/J')) ,

Substituting the Fourier transform of U (q) into Eq. (9),

00

U(q) = 2~ f U(w(j~o)exp(-iw(Y~Oq)dw
-00

and
00

U(w) = f U(q)exp(iwaZOq)aZodq = £Z(~)
c C W+lO'

-00

where, Z(w) is the resonator impedance, we get

00

Gmm,(l, 1') = i f dw _Z(W! F~(w, J)Fmt(w, 1'),
W+lO

-00

with

- 1 f -azoFm(w, 1) = - d¢ exp(im¢ + iw-q(¢, 1)).
2n C

Note that, for low intensity, q = m cos ¢, and thus

Fm(w, 1) = i-ml m(w azO m),
C

where 1m is the Bessel function.

(9)

(10)
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One can introduce the spectrum of the bunch (am (w)) as

O'm(W) = f Fm(w, J)Rm(J)dJ. (11)

Multiplying by Fm (w/ , J) on both sides of Eq. (8) and integrating over J, we finally obtain

where

00 • Z(p)
Lam(l) = L z-Mzp Lam,(p),
m p=-oo P m/

~ m f dl/Jo *Mzp = L....J --Ik,s --Fm (p, J)Fm(l, J)dJ
Q-m dJm=-oo,m#O

(12)

(13)

is the matrix element.
Here, P and 1represent w= pwo + Q, and W' = lwo + Q, respectively; Wo is the revolution
frequency and Jz2t) is replaced by L;=-oo ziJ) .

For an analysis, only two adjacent modes (m and m + 1) are considered. We assume
that the impedance has a very simple form, as shown in Figure 4; its resonant frequency
(wr = PrWO + Qwso) lies just between the maximum of the two spectrum modes (m and
m + 1).

From Figure 4, one can see that the am spectrum overlaps with the inductive part of the
impedance while the am+l spectrum overlaps with the capacitive part. Thus, for P = Pr,

(14)

c c
- -Mpr,Pram+l(Pr) - -Mpr,-Pram+l(-Pr).

Pr Pr

A similar relation can be obtained for P = - Pr.
In the above expression

m m+l
Mpr,±Pr = Q _ m h,sLm(Pr, Pr) ± Q _ (m + 1) h,sLm+!(Pr, Pr),

here, Lk(k = m, m + 1) is Lk(Pr, ±pr) = f -' aa~o Fk(Pr, J)* Fk(±pr, J)d J is a positive

quantity due to the fact that - aa~O is positive.
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FIGURE 4: Simplified resonator impedance model.
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Notice that am (-Pr )=(-l)mam (Pr), and thatLm (Pr, - Pr )=Lm(Pr, Pr), L m+l (Pr, - Pr)
== - Lm+1(Pr, Pr), when m is even. Then, the matrix equation reduces to

The eigenvalues are solutions of the following equation:

Q2_[(2m+1)+2h,s(m£m~ -(m+1)£m+l~)]Q+m(m+1)'

[
2 R

2
- LC ( C L )]. 1 + 4lk,s L mL m+l 2 - 2lk,s L m+l - - L m- == 0.

Pr Pr Pr

Obviously, if Q has two split real roots, Ik,s must satisfy

(16)

{ I - [(m + l)£m+l £ +m£m~] 2Ik,s}2 - 4m(m + l)£m£m+l R; .4It,s > O. (17)
Pr Pr Pr

Above the transition, rJ > 0, Ik,s > 0, and

1
Ik Sth < C L R . (18)

, 2(m + l)Lm+l - + 2mLm- ± 2 Im(m + l)LmL m+l -
~ ~ y ~

The severe condition is given by taking the positive sign in the last term ofthe denominator.
This is because in this case both the inductive and capacitive impedances help the resistive
to decrease the value of the merging point. The physical meaning is clear: because the
spectrum of the lower mode (m) overlaps with the inductive part of the impedance, it pulls
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the coherent frequency up, and the spectrum of the higher mode (m + 1) overlaps the
capacitive part of the impedance, and thus pulls the coherent frequency down. Together,
these increase the merging speed and lower the value of the merging point.

Below transition, the situation is just the opposite: the inductive part of the impedance
pulls the lower mode (m) down, and the capacitive part of the impedance pulls the higher
mode (m + 1) up, so that the merging speed decreases, and the value of the merging point
is increased. It can be seen from condition (17), that because 1] < 0 and lk,s == -Ilk,s 1 < 0,
the condition becomes

-1
Ilk,s Ith > C L R . (19)

2(m + 1)L:m+l Pr + 2mL:mPr ± 2Jm(m + 1)L:mL:m+l p;

If the last term in the denominator takes a positive sign, the right-hand side of Eq. (19)
becomes minus. This means that there is never merging together at all. However, if a minus
sign is taken, and when (m + 1)L:m+l C + mL:mL < Jm(m + 1)L:mL:m+l Rs, merging
occurs somewhere. However, due to the opposite effects of the reactance and resistance, the
value of the merging point is increased.

Although the above explanation seems to be less persuasive, it coincides with the practical
case in which the net result of the upper mode (m + 1) interacting with the resonator
impedance always appears to be more capacitive (or less inductive), compared with the
lower mode (m). It is thus well justified by the numerical-calculation results of Eq. (6).
Figures 5(a) and 5(b) are typical examples for Q == 1 and K == 1.

The adjacent azimuthal modes remain separated until a very high current in the case
ex < 0, whereas different modes merge even at a very low intensity in the case ex > o.

In the above analysis, since we neglected the frequency spread (w(l)), the value of the
merging point is just equal to the threshold of the azimuthal mode coupling. However, if we
include the frequency spread, the value of the merging point is not equal to the instability
threshold. However the condition of merging is a necessary, but insufficient, condition
for exciting azimuthal mode coupling instabilities. Thus, in the case that ex < 0, most
instabilities occur between the radial modes within the same azimuthal band; however, in
the case that ex > 0 the mechanism of instabilities is more complex. It sometimes occurs
with a mixture of the radial and azimuthal modes. Once the azimuthal mode coupling
instabilities occur, the growth rate rapidly increases with the intensity. This is also shown
in Figures 5(a) and 5(b).

2. From a general point of view, the threshold of microwave instabilities is higher over
a rather wide range of K values for the case ex < O. Even in the range where the threshold
is lower than in the case ex > 0, in most cases bunch lengthening is still much less serious
than in the case ex > 0, if the machine is operated at the same intensity.

Comparisons of the current thresholds between both ex > 0 and ex < 0 cases are given
in Figure 6. In this comparison, the growth rate 5 x 10-3 (in units of wso) is chosen as the
threshold for all unstable modes, and radiation damping is omitted.

Similar characteristics have been obtained for different Q, so we can take the more typical
one, Q == 0.6, as an example for a detailed description. From this picture, one can find three
different regions: K < 0.75; 0.75 < K < 1.1; K > 1.1.
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FIGURE 5: Adjacent azimuthal modes merge with the intensity and the magnitude of the growth rate (proportional
to the size of the cross).
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FIGURE 6: Current threshold vs K for Q=0.6 (Solid lines for a >0 and dashed lines for a <0). The numbers
attached to the marks indicate the bunch lenthening (O'z/O'zo), with underline for a<O and without that for a>O.

1) K > 1.1. In this region the threshold of ex < 0 is higher than the threshold of ex > 0,
and the system appears to be inductive (or negative inductive) for ex > 0 (or ex < 0).

In the case where ex < 0, since all of the azimuthal modes are fully separated, a total
of four pure radial mode instabilities (each occurs in its own azimuthal band), appear in
this region. All of these instabilities are not strong, and the increase in the growth rate with
intensity is quite slow. For example, when Ik,s == Ik,sth +10, the corresponding growth rate
only increases five times, i.e., from 5 x 10-3 to 2.5 X 10-2 . The lowest threshold among
the four instabilities is Ik,s == 4 at K == 1.2.
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In the case where a > 0, two pure radial mode and one azimuthal mode instabilities appear
in this region. The azimuthal mode instability is the strongest; it occurs in the merging region
ofmode 2 and mode 3 when the intensity is high. Nevertheless, its threshold is not the lowest
one. The lowest threshold which becomes the boundary in this region is determined by one
of the two pure radial modes which occur when azimuthal modes 1 and 2 are separated at
low intensity. These two instabilities are rather weak, and the maximum growth rate is never
over 2.5 x 10-2 when the intensity is above the threshold. They finally both disappear at
K > 1.8; mode 2 also disappears at K < 1.0. The corresponding threshold with different
K is lower than that in the case a < O.

The bunch lengthening (!!.L. ) at the threshold is also shown in Figure 6. Obviously, the
azo

bunch lengthening is much stronger in the case a > O.
2) 0.75 < K < 1.1. The threshold of a < 0 is lower than that of a > 0; in this region

the resistive character is dominant, with a little inductive (or negative inductive) character
when K > 0.9, and with a little capacitive (or negative capacitive) character when K < 0.9
fora> 0 (ora < 0).

In the case a < 0, although the four pure radial mode instabilities still exist, the threshold
of mode 2 decreases very rapidly with decreasing K, and arrives at its minimum at K = 1,
giving the lowest threshold value.

For a > 0, only mode 1 still exists, and gives the boundary of the threshold when
K > 0.8. Although its value is high, bunch lengthening is very strong.

The maximum difference in the threshold value between a < 0 and a > 0 is less than
50% that at K = 1; the former is Ik,s = 3, and the latter is Ik,s = 4.2. If a machine with
a > 0 is operated at the same intensity as the threshold of a < 0, i.e., Ik,s = 3.0, the bunch
lengthening is 1.07, which is higher than 1.001 for a < O.

For increasing the threshold of a < 0 in this region, the simplest way is to increase the
energy spread of the beam; one can roughly estimate the bunch lengthening at the new higher
threshold by the scaling. A calculation shows that it is effective in most cases; only about
a 5r-v10% energy spread increment is needed. One can thus easily increase the threshold
of the a < 0 case to the same value as in the a > 0 case. In the meantime, the bunch
lengthening is still less than that in the case a > O.

3) K < 0.75. The threshold of a < 0 is higher than that for a > 0, and the capacitive
character is dominant in this region. The lowest threshold boundary in the case a < 0 is
determined by the pure radial mode 2 instability; in the case a > 0 it is determined by the
azimuthal mode instability, which is very strong, and the bunch shape is seriously deformed
and two peaks appear.

It is surprising that the threshold is unbelievably high in this region. This may not be
true for a realistic machine; first, a smaller K means a weaker wake field, which may not
be reasonable in practical cases. Second, because the real impedance cannot be correctly
described sufficiently by the simple resonator impedance model, a small K means that
the system appears to be more capacitive for a short natural bunch length; it may also not
be true. It was pointed out in Ref. 8 that the wake field of a realistic machine is always
determined by many small discontinuities, such as bellows, masks, transitions, etc., and
that most of them are inductive. It is quite different from the resonator impedance. Thus, in
practice, most realistic tnachine parameters are located at the right-hand side of the picture
i.e., K > 0.9.
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FIGURE 7: Threshold and bunch length behaviour for a<O and a>O with the wake field of old chamber of SLC
damping ring.

A real example is given here by using the wakefield of the old vacuum chamber of the SLC
damping ring. Figures 7(a) and 7(b) give the thresholds for both cases; the result coincides
with the analysis mentioned above.

Another very interesting phenomenon is that even above the microwave threshold the
bunch length behavior is very similar to that described by a pure potential well distortion;
about half the bunch lengthening is contributed by PWD in most cases.

5 CONCLUSION

The longitudinal bunch shape is less deformed and bunch lengthening is less serious in
electron rings with negative momentum compaction factor. A natural "negative feedback"
mechanism can explain the above mentioned phenomenon. Even above the threshold the
intrinsic shape of the potential well field plays an important role.
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