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8 Abstract: Due to its relatively lower integrity, precast concrete structures are considered to be more 

9 vulnerable to progressive collapse than cast-in-place concrete structures. However, to date, majority 

10 of existing studies on progressive collapse focused on cast-in-place concrete structures, little 

11 attentions were paid to precast concrete structures. Among existing precast concrete structures, 

12 unbonded post-tensioning precast concrete structure is one of innovation dry connection structural 

13 systems, which no casting at the connections on site. Its excellent seismic performance was 

14 recognized by many studies, while studies on its progressive collapse resistance were very few. To 

15 fill this knowledge gaps, in this paper, eight half-scaled unbonded post-tensioning precast concrete 

16 beam-column sub-assemblages with different connection configurations were tested through 

17 pushdown tests to investigate their capacities and resistance mechanisms to prevent progressive 

18 collapse. The test results demonstrated various behaviors of beam-column sub-assemblages with 

19 different connection types. It was found that, as the longitudinal reinforcements were discontinuous 

20 across the beam-column joint region in the beams, flexural action observed in the cast-in-place 

21 concrete frames was not mobilized for the specimens with purely unbonded post-tensioning 

22 connections. When the specimens installed top-seat angles at the beam-column interfaces, 

23 considerable flexural action capacity could be mobilized for load resistance. Moreover, it was found 

24 that the failure modes of the specimens are distinctly different to that of conventional reinforced 

25 concrete frames or precast concrete frames with cast-in-place joints. The characteristic of 

26 compressive arch action and tensile catenary action in tested specimens is quite different to that of 

27 conventional reinforced concrete frames. 
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29

30 1. Introduction

31        Due to the advantages of environment friendly, fast track construction, large bulk of offsite 

32 production, and high-quality workmanships, precast concrete (PC) structures are widely used in the 

33 construction projects worldwide. However, as the beam longitudinal reinforcements are 

34 discontinuous in the beam-column joint, PC frames with normal dry connections are more vulnerable 

35 to progressive collapse, compared to conventional cast-in-place reinforced concrete (RC) frames. To 

36 date, majority of attentions were paid on monolithic cast-in-place RC structures to resist progressive 

37 collapse. Su et al. [1] tested twelve 1/2 scaled specimens to investigate the effects of beam 

38 reinforcement ratio, span-to-depth ratio, and loading rate on compressive arch action (CAA) capacity 

39 of RC beam-column sub-assemblage. Sadek et al. [2] tested two full-scale RC sub-assemblages with 

40 different seismic details. Yu and Tan [3] experimentally investigated the effects of seismic design on 

41 the performance of RC frames in mitigating progressive collapse. Yu and Tan [4] proposed three 

42 special detailing to enhance the progressive collapse resistance of RC frames. Ren et al. [5] and Lu et 

43 al. [6] carried out a series of tests on beam-slab and beam-column sub-assemblages subjected to edge 

44 or middle column missing scenario to investigate the contribution of RC slabs in progressive collapse 

45 resistance. Qian et al. [7] discussed the contribution of each alternate load path of RC buildings, such 

46 as CAA, tensile catenary action (TCA), and compressive/tensile membrane action to resist 

47 progressive collapse. Qian and Li [8-9] filled knowledge gaps for RC frames subjected to the loss of 

48 a corner column. Meanwhile, the benefits from slab to resist progressive collapse were quantified by 

49 Qian and Li [10-11]. It was found that the RC slab could significantly improve the behavior of RC 

50 buildings against progressive collapse. Shan et al. [12] tested two 1/3 scale, four-bay by two-story 

51 RC planar frames to investigate the effects of infilled wall on the load resisting mechanisms of RC 

52 frames. It was found that the infill walls could enhance the load resisting capacity of frames 

53 significantly. Peng et al. [13-14] experimentally evaluated the dynamic response of flat plate 
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54 structure subjected to an exterior or interior column removal scenario. Ma et al. [15] tested a 1/3 

55 scaled RC flat plate substructure to assess its behavior under a corner column removal scenario. Qian 

56 et al. [16] investigated the advantages of using steel braces to strengthen the progressive collapse 

57 resistance of RC frames. The steel brace increased the initial stiffness and CAA capacity significantly 

58 whereas few benefits for TCA were observed, due to compressive buckling or tensile fracture in 

59 braces at large displacement stage. Sasani et al. [17-21] conducted a series of on-site tests to capture 

60 the behavior of RC multi-storey structure subjected to different initial damages. These on-site tests 

61 evaluated the load resisting contribution from Vierendeel action, flexural action, and non-structural 

62 element such as infill walls. However, studies on PC frames to resist progressive collapse were very 

63 few. Nimse et al. [22] studied the progressive collapse behavior of PC beam-column sub-assemblages 

64 with monolithic joints. Kang and Tan [23] experimentally investigated the effects of joint 

65 reinforcement detailing and reinforcement ratio on load resistance of PC beam-column sub-

66 assemblages. Kang and Tan [24] test four specimens to assess the robustness of PC frames subjected 

67 to the loss of a penultimate column scenario. It was found that, with reasonable anchorage details, the 

68 PC structures with cast-in-place topping could obtain similar behavior as RC structures. Keyvani [25-

69 26] conducted studies on behavior of precast prestressed concrete flat slab floor to resist progressive 

70 collapse. It was found that bonded post-tensioned floor system was more susceptible to failure after 

71 column removal than unbonded one due to localization of tendon strains. Qian and Li [27] tested two 

72 large-size PC and beam-column-slab substructures with monolithic joints and one reference RC 

73 substructure to investigate the load resisting mechanism of PC frames. It was indicated that CAA, 

74 TCA could be developed in PC beams and compressive/tensile membrane actions could be developed 

75 in PC hollow core slabs with cast-in-place topping layer. However, it should be noted that PC 

76 construction with cast-in-place monolithic joints (wet joints) could not reflect the advantage of PC 

77 construction sufficiently. Therefore, the performance of PC frames with dry connections to mitigate 

78 progressive collapse was investigated by Al-Salloum et al. [28], Quiel et al. [29], and Qian and Li 

79 [30]. These tests indicated that PC frames with welded connection could not develop TCA owing to 

80 the early failure of the welded connection. The PC frames with bolted connection could not develop 
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81 CAA in PC beams as the gap between the beam and column allows the PC beams to expand outward.  

82 The bolted connection could prevent the PC beams to develop TCA, as the reinforcements were 

83 discontinuous at the beam-column joints. 

84         From above existing studies, it can be seen that, it is imperative to evaluate the robustness of PC 

85 frames with other types of dry connections to resist progressive collapse. PC frames with unbonded 

86 post-tensioning (UPT) strands were one of innovative dry connections, which was initially proposed 

87 by PREcast Seismic Structural System (PRESSS) program. A number of tests [31-32] had been 

88 carried out for the evaluation of the seismic behavior of PC frames with UPT strands. It was found 

89 that the PC frames with UPT strands could provide desirable load carrying and deformation capacity 

90 with little residual damage. However, the PC frame with UPT strands has low energy dissipation 

91 capacity. Therefore, to enhance the energy dissipation capacity of the system, several studies were 

92 conducted. Santon et al. [33] and stone et al. [34] placed extra mild rebar grouted in ducts in the 

93 beam-column joints regions to dissipate extra energy (hybrid system). It was found that the load 

94 resistance and energy dissipation capacity of the hybrid systems can match that of cast-in-place RC 

95 system. Then, Rodgers et al. [35-36] proposed new energy dissipation devices for hybrid system. 

96 Song et al. [37-38] conducted a series of tests on a novel hybrid connection. In such a connection, 

97 steel jackets were installed at the beam ends to achieve damage avoidance. The test results revealed 

98 favorable reparability in addition to self-centering and energy dissipation capacity of the novel 

99 connection. However, the aforementioned studies were mainly focused on the performance of the PC 

100 system with UPT strands or hybrid system subjected to cyclic load. Few studies were carried out to 

101 investigate their resistance to progressive collapse (monotonic load). Therefore, in this paper, a series 

102 of eight one-half scaled PC beam-column substructures with three different types of connections 

103 (UPT connection, hybrid connection with additional bolted top-seat angle, and pure bolted top-seat 

104 angle connection for comparison purpose) were tested under quasi-static pushdown loading regime.

105 2. Experimental program

106      Fig. 1 shows the difference of bending moment diagram of a frame before and after removal of a 

107 column (interior or penultimate column). It can be seen that, the bending moment in the middle joints 
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108 above the removed column changed from negative to positive after removal, whereas the negative 

109 bending moment at the side joints increased significantly. As this is overlooked in conventional 

110 structural design, the structures may suffer severe damage and worth investigating their load 

111 redistribution abilities. For this purpose, beam-column sub-assemblages were extracted from the 

112 frame at the points of contra-flexure, as shown in Fig. 1b. As shown in the figure, the sub-

113 assemblages subjected to the loss of an interior column (called interior sub-assemblage) or a 

114 penultimate exterior column (called exterior sub-assemblage) were investigated for the evaluation of 

115 the influence of horizontal constraints on the behavior of PC beam-column sub-assemblages in 

116 resisting progressive collapse. The main difference between interior and exterior sub-assemblages 

117 was the degree of horizontal constraints at the side columns. 

118 2.1. Test specimens

119       The prototype building is an eight-storey frame, which was designed in accordance with ACI 

120 318-14 [39]. The prototype frame was located on a D class site. The design spectral response 

121 acceleration parameters of SDS and SD1 are 0.46 and 0.29, respectively. The design live load of the 

122 prototype frame is 2.0 kPa. The dead load including the ceiling weight is 5.1 kPa. Fig. 2 shows the 

123 configuration of three different connections: a) UPT connection, b) hybrid connection with additional 

124 top-seat angles, c) connected solely by top-seat angles for comparison purpose. Table 1 tabulates the 

125 relationship between prototype frame and test specimens, while Table 2 summarized main 

126 characteristics of the test specimens. As listed in the Table 2, eight half-scaled specimens, which can 

127 be categorized into three groups (UP, TSUP, and TS), were tested. The design variables are 

128 connection types, effective prestressing force in strands, and locations of the lost column. UP, TSUP, 

129 and TS represent unbounded post-tensioning connection, hybrid connection, and top-seat angle 

130 connection, respectively. The letter E and I denote exterior and interior sub-assemblages, respectively. 

131 The last numeral denotes effective prestress in unbonded strands. Thus, TSUPE-0.4 indicates an 

132 exterior sub-assemblage with effective prestress of 0.4fpu, which was assembled by hybrid connection, 

133 where fpu denotes nominal ultimate strength of the post-tensioning strands (1860 MPa herein). Due to 
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134 symmetry, only half of the specimen was exhibited in Fig. 3. It should be noted that all specimens 

135 have identical cross section of beam and column as well as reinforcement details (refer to Table 1). 

136 The nominal diameter and area of unbonded strand are 12.7 mm and 97.8 mm2, respectively. The 

137 beam longitudinal rebar of 2T12 was placed at both top and bottom layers, which were discontinuous 

138 at the joint. 4T16 were used as column longitudinal reinforcement. R6 were used as transverse 

139 reinforcement. T12 and T16 denote deformed bars with diameter of 12 mm and 16 mm, respectively, 

140 while R6 indicates plain rebar with diameter of 6 mm. 

141 2.2. Material properties

142        The concrete used to cast UPE-0.4, UPI-0.4, and UPI-0.65 had an average cylindrical 

143 compressive strength of 40.0 MPa and a tensile splitting strength of 3.7 MPa. For the rest of 

144 specimens, the cylindrical compressive strength and tensile splitting strength were 38.5 MPa and 3.5 

145 MPa, respectively. The material used for top-seat angle was Grade S235, whereas Grade 8.8 M18 

146 bolts was employed to fix the top-seat angles with torque of 215 N·m. The properties of rebar and 

147 post-tensioning strand were shown in Table 3 and Fig. 4.

148 2.3. Pushdown test setup

149        The experimental setup is shown in Fig. 5. The side column bottoms were anchored to the pin 

150 supports via four high-strength bolts, and then the pin supports were fixed to the strong floor by high 

151 strength bolts with diameter of 50 mm. Each overhanging beam was connected to the A-frames 

152 through a roller. Moreover, the top of side column was bolted with a steel extension that connected to 

153 the A-frame via an additional roller. A self-equilibrium system was employed to apply an axial 

154 compressive force at the side column. A hydraulic jack (Item 1 in Fig. 5a) beneath the H-frame was 

155 used to apply vertical displacement. In order to eliminate possible out-of-plane failure of the 

156 specimens, a steel assembly (Item 3 in Fig. 5a) was specially designed to provide out-of-plane 

157 restraints to the specimens. 
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158 2.4. Instrumentation

159        To monitor the structural response accurately, extensive instrumentation was installed to monitor 

160 test results. The horizontal reaction forces from column top and overhanging beam were measured by 

161 two tension /compression load cells (Item 5 in Fig. 5a), which were installed at the roller. However， 

162 a load pin (Item 8 in Fig. 5a), which was installed at the bottom support, was used to measure the 

163 horizontal and vertical reaction forces at the pin support. The applied vertical load was captured by a 

164 load cell (Item 2 in Fig. 5a) installed beneath the hydraulic jack. Meanwhile, two load cells (Item 7 in 

165 Fig. 5a) were installed at jacking end of the strands to monitor the variation of prestressing forces 

166 during tests. As shown in Fig. 5b, the overall vertical deflection of the beam and lateral movements 

167 of the side column were measured by a series of linear variable differential transformers (LVDTs). 

168 Moreover, strain gauges were amounted onto the reinforcements symmetrically before casting.

169 3. Test results

170        Eight specimens were tested through pushdown loading regime. The critical test results, for 

171 instance, the first peak load (FPL), ultimate load (UL), and the maximum horizontal compressive or 

172 tensile forces were summarized in Table 4. Fig. 6 illustrates the relationship of applied load versus 

173 middle joint displacement (MJD) of tested specimens. More detail description and discussion could 

174 be found in following sections.

175 3.1. Global behavior and failure modes

176 Specimens with bolted top-seat angle connection 

177 TSE and TSI have identical dimensions and reinforcement details except different boundary 

178 conditions. The axial compressive force ratio of 0.2 was applied at the side column. Compared to 

179 TSE, TSI has overhanging beam beyond the side column. It can be observed from Fig. 6 that TSI and 

180 TSE obtained UL of 12.1 kN and 11.6 kN at MJD of 100 mm and 60 mm, respectively. The applied 

181 load began to decrease gradually until the end of test. The test results indicated the TCA resistance of 

182 TSE and TSI is negligible, as the beam reinforcements were discontinuity and the top-seat angle 

183 unable to provide sufficient tie-force.
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184 The failure modes of TSE and TSI were shown in Figs. 7 and 8, respectively. The beam and 

185 column almost detached completely at large deformation stage. For TSE, the failure was concentrated 

186 at the beam ends and only a few thin flexural cracks observed at the beam and side column. For TSI, 

187 it was quite similar to that of TSE except no crack formed at the side columns. This is because the 

188 overhanging beam restricted the deformation of the side columns effectively. It is worth noting that 

189 the top-seat angles experienced limited deformation.  

190 Specimens with unbonded post-tensioning connection 

191 UPE-0.4 has effective prestress of 0.4fpu in unbonded strand and the axial compressive force 

192 ratio of the side column is 0.2. The FPL of UPE-0.4 was measured to be 30 kN at an MJD of 45 mm, 

193 whereas the UL was measured to be 73 kN when the MJD up to 540 mm. Finally, test was stopped 

194 due to excessive horizontal deflection in the right-hand side column. Fig. 9 shows the failure mode of 

195 UPE-0.4. As shown in the figure, the failure mode of UPE was quite different to that of TSE and TSI. 

196 Concrete crushing occurred at the compressive toes of the PC beam rather than concrete spalling 

197 occurred at the beam end. No cracks occurred along the beam whereas wide opening was found at 

198 beam-column interface due to fixed-end rotation. Moreover, due to tensile force from strands and 

199 axial compression at the side column, a typical large eccentric compressive failure was observed at 

200 the right-hand side column, which resulted in extensive flexural cracks occurred at the inner side of 

201 the column, but severe concrete crushing occurred at the outer side. However, the left-hand side 

202 column experienced much milder damage, only several thin flexural cracks formed in the inner side. 

203 The different failure mode of two side columns was because the damage always occurs in relatively 

204 weak side first and then concentrated in this side in the latter loading steps.

205 UPI-0.4 has overhanging beam at both sides. For UPI-0.4, the FPL of 35 kN was measured at 

206 an MJD of 29 mm. Thus, the FPL of UPI-0.4 was approximately 116.6 % of that of UPE-0.4. With 

207 the increase of MJD, the opening at the beam-column interfaces became wider and wider. Meanwhile, 

208 the concrete crushing in the compressive toes of the beam end became more severe. When the MJD 

209 reached 631 mm, one wire of the bottom strand fractured, as a result, the applied load dropped from 

210 150 kN to 142 kN. Afterwards, the applied load kept increasing until the end of test. The UL of UPI-
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211 0.4 was 151 kN at an MJD of 652 mm, which was approximately 206.8 % of that of UPE-0.4. As 

212 shown in Fig. 10, the failure mode of UPI-0.4 was quite different to that of UPE-0.4. Wide opening 

213 was observed at the beam-middle column interface and complete detach was observed between the 

214 beam and side column surfaces. Thus, the progressive collapse resistance was totally provided by two 

215 unbonded strands in large deformation stage. Moreover, due to considerable horizontal stiffness 

216 provided by overhanging beam, the damage of the side column of UPI-0.4 was less severe and only 

217 thin flexural cracks occurred along the side columns.

218 UPI-0.65 has similar dimensions and reinforcement details as UPI-0.4 except higher 

219 effective prestress of 0.65fpu was applied. When the MJD reached 39 mm, the FPL of 44 kN was 

220 measured, which was 125.7 % of that of UPI-0.4. Thus, the specimen with higher effective prestress 

221 would obtain higher resistance at small deformation stage. When the MJD reached 542 mm, the UL 

222 of 131 kN, which was 86.8 % of that of UPI-0.4, was measured. After that, fracture of the wires of 

223 the strands was observed consecutively until both two unbonded strands fractured completely at an 

224 MJD of 628 mm. As shown in Fig. 11, except the fracture of both strands, the failure mode of UPI-

225 0.65 was quite similar to that of UPI-0.4.

226 Specimens with hybrid connection

227          TSUPE-0.4, TSUPI-0.4, and TSUPI-0.65 were, respectively, have the enhancement over UPE-

228 0.4, UPI-0.4, and UPI-0.65 through extra bolted top-seat angle installed at the beam-column interface. 

229 The FPL and UL of TSUPE-0.4 were 49 kN and 83 kN at MJD of 80 mm and 522 mm, respectively, 

230 which were 163.3 % and 113.7 % of that of UPE-0.4, respectively. Thus, the bolted top-seat angle 

231 enhanced the load resistance effectively, especially for the FPL at relatively small deformation stage. 

232 Fig. 12 shows the failure mode of TSUPE-0.4. As shown in the figure, severe concrete spalling 

233 occurred at the beam end and cracks formed at the beam end and side column. Moreover, concrete 

234 crushing was observed at outer sider of the side columns. In general, the failure mode of TSUPE-0.4 

235 was almost a combination of that of TSE and UPE-0.4 except top-seat angles achieved larger 

236 deformation.
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237               Compared to TSUPE-0.4, TSUPI-0.4 has overhanging beam beyond the side column. When 

238 MJD reached 95 mm, the FPL of 51 kN, which is about 145.7 % of that of UPI-0.4, was measured. 

239 Similar to TSUPE-0.4, severe flexural cracks were observed at the beam ends when the MJD reached 

240 250 mm (about one beam depth). With increasing MJD to 330 mm, flexural crack was first observed 

241 in the left side column. Test was stopped when the displacement reached 600 mm with a UL of 181 

242 kN, which was approximately 119.9 % of that of UPI-0.4. As shown in Fig. 13, in general, the failure 

243 mode of TSUPI-0.4 was quite similar to that of TSUPE-0.4 except TSUPI-0.4 experienced much 

244 milder damage in side columns. 

245           With a higher effective prestress of 0.65fpu, TSUPI-0.65 obtained a higher FPL of 64 kN at an 

246 MJD of 76 mm. The UL of 178 kN was measured at an MJD of 600 mm. When the MJD reached 290 

247 mm, the flexural cracks were first observed in the left side column, which were earlier than that of 

248 TSUPI-0.4. As shown in Fig. 14, in general, the failure mode of TSUPI-0.65 was quite similar to that 

249 of TSUPI-0.4. It was noted that the top-seat angles of TSUPI-0.65 experienced larger deformation 

250 than that of TSUPI-0.4.

251 3.2. Horizontal reaction

252            Fig. 15 shows the comparison of total horizontal reaction versus MJD curves of tested 

253 specimens while Table 4 tabulated the maximum horizontal reaction force. As shown in the figure 

254 and Table 4, the maximum horizontal compressive force in UPE-0.4, UPI-0.4, UPI-0.65, TSUPE-0.4, 

255 TSUPI-0.4, and TSUPI-0.65 were -66 kN, -96 kN, -84 kN, -50 kN, -93 kN, and -113 kN, respectively. 

256 Therefore, UPE and TSUPE obtained much lower horizontal compressive force compared to the 

257 counterpart UPI and TSUPI specimens due to no overhanding beams providing additional constraints. 

258 In addition, the maximum tensile force of UPE-0.4, UPI-0.4, UPI-0.65, TSUPE-0.4, TSUPI-0.4, and 

259 TSUPI-0.65 were 139 kN, 323 kN, 321 kN, 146 kN, 380 kN, and 364 kN, respectively. Comparison 

260 of the maximum horizontal tensile force shows that UPE and TSUPE only achieved half of the 

261 maximum horizontal tensile force as that of UPI and TSUPI specimens. 
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262           Fig. 16 illustrates the decomposition of the contribution of horizontal reaction force of UPI-0.4 

263 and UPE-0.4. As shown in Fig. 16a, for UPI-0.4, bottom pin provided the largest contribution for the 

264 compressive force while the overhanging beam provide the largest portion of the tensile force.  For 

265 specimen UPE-0.4, as no overhanging beams beyond the side column, the bottom pin and column top 

266 roller provide almost similar contribution in tensile force. However, similar to UPI-0.4, majority of 

267 the compressive force was contributed by the pin beneath the side column. 

268 3.3. Deflection 

269          Fig. 17a illustrates the overall deflection of the beams of UPI-0.65. As plastic hinges did not 

270 form at the beam ends during the test, the beam elements deformed straightly. In general, the beams 

271 in the specimens with UPT connection deformed straightly. Fig. 17b shows the deformation shape of 

272 TSUPI-0.65. Different to UPI-0.65, TSUPI-0.65 was deformed in double curvature manner, which 

273 agreed well with the observations that flexural action was mobilized at the beam end to resisted load. 

274 Similar phenomena were observed for other specimens with hybrid connections. Figs. 18a and b 

275 show the lateral deflection of the left side column of TSUPE-0.4 and TSUPI-0.4, respectively. As 

276 shown in the figure, the side columns were pushed outward (negative value) firstly due to 

277 compressive axial force developed in the beams. In large deformation stage, they were pulled inward 

278 (positive value) because considerable tensile force developed in the strands. The measured maximum 

279 inward movement in TSUPE-0.4 and TSUPI-0.4 were 24.2 mm and 6.2 mm, respectively. Compared 

280 to TSUPE-0.4, due to desirable horizontal constraint provided by overhanging beams, the side 

281 column of TSUPI-0.4 experienced less lateral deflection. In general, all the exterior side columns 

282 (without overhanging beam) suffered a much larger deformation than interior ones (with overhanging 

283 beam).

284 3.4. Strain gauge results

285        The strain distributions along beam longitudinal reinforcements of UPE-0.4, UPI-0.4, and 

286 TSUPI-0.4 were demonstrated in Figs. 19, 20, and 21, respectively. As shown in the figure, 

287 compressive strain about -180 με was initially measured due to the effects of effective prestress of 
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288 0.4fpu in post-tensioning strands. As shown in Fig. 19a, the strain of the bottom reinforcement near 

289 the middle joint reduced to 0 με when an MJD reached 20 mm, which could be explained as the 

290 opening formed in the bottom of the beam end near the middle column. However, the strain of the 

291 bottom reinforcement near the side column kept increasing with further increasing the MJD due to 

292 the rotation of the beam end near the side column compacted the bottom of the beam section more 

293 tightly. Conversely, due to similar reasons, for top reinforcements, the beam reinforcement near the 

294 middle joint kept increasing with increase of the MJD while the beam reinforcement near the side 

295 column decreased to 0 με soon. As shown in Fig. 20, the varying of strain in beam longitudinal 

296 reinforcement of UPI-0.4 was very similar to that of UPE-0.4. However, as illustrated in Fig. 21, the 

297 strain gauge results in beam longitudinal reinforcements of TSUPI-0.4 were quite different. As 

298 shown in Fig. 21a, for bottom reinforcements, tensile strain was measured at the beam end near the 

299 middle joint when the MJD less than 250 mm. After MJD beyond 250 mm, the tensile strain began to 

300 decrease as the top-seat angle began to quit work and wide opening occurred at the beam-middle 

301 column interface. For the strain in the bottom reinforcement near the side column, compressive strain 

302 of -2281 με was measured at an MJD of 100 mm. After that, the compressive strain began to decrease 

303 as severe concrete crushing in the beam end. For the top reinforcement, the overall trend was similar 

304 to that of the bottom rebar, whereas the maximum tensile and compressive strain, respectively, was 

305 measured to be 1886 με and -2278 με when the displacement up to 100 mm.

306  3.5. Prestressing forces

307        Fig. 22 shows the variation of total prestressing forces in unbonded strands. The initial effective 

308 prestressing force in UPE-0.4, TSUPE-0.4, UPI-0.4, TSUPI-0.4, UPI-0.65, and TSUPI-0.65 were 153 

309 kN, 148 kN, 150 kN, 146 kN, 237 kN, and 242 kN, respectively. In addition, the measured maximum 

310 prestressing force in UPE-0.4, TSUPE-0.4, UPI-0.4, TSUPI-0.4, UPI-0.65, and TSUPI-0.65 were 269 

311 kN, 277 kN, 323 kN, 364 kN, 329 kN, and 368 kN, respectively. Therefore, all the strands in the 

312 specimens with overhanging beam reached their yield strength, which indicates the stronger 

313 boundary better explores the full capacity of the prestress strands. Furthermore, it was found that the 
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314 prestressing forces in specimens with hybrid connections developed faster than others. This is 

315 because, for a given MJD, the elongation of strands in these specimens was larger than others. It 

316 should be noted that the strands in UPI series specimens fractured earlier than that in TSUPI series 

317 specimens. This maybe because UPI series specimens concentrated the main rotation at the beam-

318 column interfaces (opening) whereas TSUPI series specimens deformed in a double-curvature 

319 manner and the most critical section was at the edge of the top-seat angle plate, which resulted in the 

320 stress distribution in the strands of TSUPI series more uniform.  

321 4. Discussions of the test results

322 4.1. Effects of boundary conditions

323        As listed in Table 4, the FPL of UPE-0.4 and UPI-0.4 were 30 kN and 35 kN, respectively. In 

324 addition, the UL of UPE-0.4 and UPI-0.4 were measured to be 73 kN and 151 kN, respectively. 

325 Therefore, for specimens with UPT connections, stronger horizontal restraints could enhance the FPL 

326 and UL by 16.7 % and 106.8 %, respectively. Furthermore, compared to UPI-0.4, UPE-0.4 achieved 

327 less tensile force in strands, which could be explained to the large eccentric compression failure in 

328 the side columns without overhanding beams. Regarding the failure modes, due to the additional 

329 horizontal constraints of overhanging beam, the side columns of UPI-0.4 experienced much milder 

330 damage, compared to UPE-0.4. For specimens with hybrid connection, the FPL of TSUPE-0.4 and 

331 TSUPI-0.4 were 49 kN and 51 kN, respectively. Thus, the overhanging beams had little effects on the 

332 PFL of the specimens with hybrid connections. When the MJD up to 600 mm and 522 mm, the UL of 

333 TSUPI-0.4 and TSUPE-0.4 were measured to be 181 kN and 83 kN, respectively. Thus, due to the 

334 overhanging beams, the TSUPI-0.4 increased UL by 118.1%, compared to TSUPE-0.4. 

335 4.2. Effect of effective prestress force

336        As listed in Table 4. The FPL of UPI-0.4, UPI-0.65, TSUPI-0.4, and TSUPI-0.65 were 35 kN, 44 

337 kN, 51 kN, and 64 kN, respectively. Thus, the higher effective prestress in post-tensioning strands 

338 could increase the FPL of UPI and TSUPI series by 25.7 % and 27.5 %, respectively. As shown in 

339 Fig. 6, the growth of load resistance of UPI-0.65 and TSUPI-0.65 were slower than that of UPI-0.4 
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340 and TSUPI-0.4 at the beginning of the test. This is mainly due to the higher effective prestress force 

341 may result in the strands reach their yield strength earlier. Moreover, the fracture of strand was firstly 

342 observed in UPI-0.65 at an MJD of 542 mm while it was 621 mm for UPI-0.4. Thus, the higher 

343 effective prestress may lead to earlier fracture of the strands and reduce its deformation capacity. 

344 Therefore, in general, lower effective (less than 0.65 fpu) prestress was preferred for post-tensioned 

345 precast concrete frame to resist progressive collapse, similar to Cheok and Lew [40] for seismic 

346 resisting design. 

347 4.3. Effect of top-seat angle

348        Compared to UPI-0.4, TSUPI-0.4 increased the FPL and UL by 45.7 % and 19.9 %, respectively. 

349 Thus, installing top-seat angle could improve the collapse resistance effectively. Moreover, due to the 

350 rotation restraint provided by the top-seat angle, the failure mode TSUPI-0.4 was significantly 

351 different to that of UPI-0.4. For UPI-0.4, wide opening was observed at the beam-column interface 

352 and no crack occurred along the beam. For TSUPI-0.4, severe flexural cracks were observed in the 

353 beams. Similar results were observed in TSUPE-0.4 and TSUPI-0.65. In general, installing top-seat 

354 angle could enhance the load resistance significantly and the flexural action could be mobilized to 

355 resist progressive collapse.

356           Fig. 23a compares the load resistance of TSUPI-0.4 to the superposition of TSI and UPI-0.4. 

357 As shown in the figure, the resistance of TSUPI-0.4 was larger than the superposition of TSI and 

358 UPI-0.4 from the beginning to the end. Thus, the hybrid connection achieved better resistance than 

359 the overall resistance capacity of two separate connections effect of one plus one over two. This is 

360 because the top-seat angle evoked flexural action and reduced the effective length of beam. In 

361 general, similar observations were obtained for TSUPE-0.4 and TSUPI-0.65, as shown in Fig. 23b 

362 and c.

363 4.4. Dynamic load resistance

364         Based on the energy balance method proposed by Izzuddin [41], the external work is equal to 

365 the strain energy increased in the remained structure. Thus, the quasi-static progressive collapse 
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366 resistance can be converted to dynamic resistance, that is, pseudo-static progressive collapse 

367 resistance. The dynamic progressive resistance can be determined by equation below:

368                                            (1)duuP
u

uP
du

NS
d

dCC )(1)(
0


369 where  and  represent the capacity function and the nonlinear static loading estimated )(uPCC )(uPNS

370 at the displacement demand u, respectively.

371           Fig. 24 illustrates the dynamic load resistance of the tested specimens. The dynamic load 

372 resistance of UPE-0.4, UPI-0.4, UPI-0.65, TSUPE-0.4, TSUPI-0.4, and TSUPI-0.65 were 49 kN, 71 

373 kN, 67 kN, 62 kN, 89 kN and 91 kN, respectively. As shown in the figure, installing top-seat angles 

374 could enhance the dynamic load resistance up by 35.8 %. 

375 4.5. Load resisting mechanisms

376           Typical load resisting mechanisms of conventional RC frame are demonstrated in Fig. 25. As 

377 shown in Fig. 25a, flexural action and CAA were mobilized in sequence to resist progressive collapse 

378 at relatively small deformation stage. Flexural action depends on the bending moment capacity of the 

379 plastic hinge whereas CAA relies on the horizontal constraints at the beam ends. In general, with the 

380 increase of the MJD, the concrete crushing may lead to the termination of CAA. When the MJD 

381 exceeds about one beam depth, as shown in Fig. 25b, the axial force in the beam may change from 

382 compression to tension and TCA was mobilized to resist load. For RC structures, the decreasing of 

383 TCA was usually accompanied by rebar fracture. Moreover, penetrate cracks usually occur along the 

384 beam due to tensile axial force. 

385           However, the load resisting mechanisms developed in PC frames observed in this study were 

386 quite different to that of conventional RC frames, as shown in Fig. 26. For specimens with UPT 

387 connection, as no beam longitudinal rebar passed through the beam-column joint, plastic hinge would 

388 not form at the beam end and thus, flexural action was not mobilized to resist the load. From the 

389 beginning of the test, the CAA and the tensile force developed in the strands together to resist the 

390 load. However, different to RC frames, the CAA mobilized in beam will not be terminated as the 

391 compressive force was actively applied by prestressing strands. Thus, the CAA may have a negative 
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392 contribution to the load resistance when the displacement beyond about one beam depth. As shown in 

393 Fig. 26a, when the displacement was small, the arching force (N in the figure) developed in beams 

394 started to help to resist the vertical load (P in the figure). However, when the displacement exceeded  

395 about one beam depth, as shown in Fig. 26b, the direction of resultant force of the arching force 

396 would change from upward to downward, and thus, negative contribution generated. For specimens 

397 with UPT connections, as the CAA and TCA provided the load resistance independently. The 

398 contribution from TCA could be determined by the vertical component of prestressing forces. The 

399 contribution from CAA can be simply determined by subtracting the resistance of TCA from the 

400 measured load resistance. For the sake of brevity, only the decomposition of load resisting capacity 

401 of UPI-0.65 was shown in Fig. 27. As shown in the figure, the contribution of load resistance from 

402 TCA was always positive while the contribution of CAA will change from positive to negative when 

403 the vertical displacement beyond about one beam depth. 

404           As shown in Fig. 28，for specimen with hybrid connection, flexural action was mobilized to 

405 resist progressive collapse as the top-seat angle constraints the rotation of beam end. It should be 

406 noted that, as the flexural action could not be simply determined. The decomposition of load 

407 resistance of specimens with hybrid connection was not shown herein. More detailed analysis should 

408 be carried out to determine the flexural action in the specimens with hybrid connection in the future 

409 study. 

410 5. Conclusions

411        Based on the experimental results, the following conclusions can be drawn:

412 1. In RC structure, tensile catenary action (TCA) is kicked in after compressive arch action (CAA). 

413 However, in current study, the TCA in unbonded post-tensioning strands can be mobilized at the 

414 beginning of the test. Thus, the CAA and TCA can work simultaneously.

415 2. Different to RC frame, as no beam longitudinal reinforcements pass through the beam-column 

416 joint and the strands are unbonded, flexural action would not be developed to resist progressive 

417 collapse for the specimens with unbonded post-tensioning connection. However, flexural action 
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418 can develop in specimens with top-seat angle due to the top-seat angle constrains the rotation of 

419 beam end partially.

420 3. For conventional RC frame, CAA will be terminated when the vertical displacement beyond 

421 about one beam depth due to concrete crushing. However, in this study, the CAA developed in 

422 PC frames with unbonded post-tensioning strands was mainly due to prestressing force of the 

423 strands and thus, the CAA will not vanish until the beam and column separate completely 

424 (prestressing force will not generate compressive stress in the beam concrete). The CAA even 

425 generates negative contribution to load resistance when the vertical displacement exceeds about 

426 one beam depth.

427 4. Installing top-seat angle could improve the behavior by evoking flexural action and reducing the 

428 effective length of beam. On the other hand, the top-seat angle may lead to more severe damage 

429 in beam, especially in the beam end, resulting in less reparability of frame.

430 5. Higher effective prestress benefits the development of the resistance at small deformation. 

431 However, the higher effective prestress may reduce the deformation capacity of the strands, 

432 leading to the earlier strand fracture and lower ultimate load capacity.

433 6. Stronger boundary condition could improve the performance of the frame in terms of load 

434 resistance and deformation capacity. The failure of the specimens without overhanging beams 

435 was controlled by the large eccentric compression failure at the side columns. However, the 

436 failure of specimens with overhanging beams was controlled by the fracture of strands. Thus, the 

437 specimens have overhanging beam could fully use the material properties of the strands. 
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549 Figure caption list

550 Fig. 1. Bending moment diagram of a frame: (a) before removal of column; (b) after removal of 

551 column

552 Fig. 2. Tested connections: (a) unbonded post-tensioning connection; (b) hybrid connection; (c) 

553 bolted top-seat angle connection

554 Fig. 3. Details of test specimens: (a) TSUPI; (b) UPE; (c) cross sections

555 Fig. 4. Stress-strain constitutive curves: (a) rebar; (b) post-tensioning strands

556 Fig. 5. Test setup and instrumentation: (a) photo; (b) elevation view

557 Fig. 6. Vertical load-displacement curves

558 Fig. 7. Failure mode of TSE

559 Fig. 8. Failure mode of TSI

560 Fig. 9. Failure mode of UPE-0.4

561 Fig. 10. Failure mode of UPI-0.4

562 Fig. 11. Failure mode of UPI-0.65

563 Fig. 12. Failure mode of TSUPE-0.4

564 Fig. 13. Failure mode of TSUPI-0.4

565 Fig. 14. Failure mode of TSUPI-0.65

566 Fig. 15. Comparison of the horizontal reaction force versus MJD curves

567 Fig. 16. Contribution of horizontal reaction force from each constraint: (a) UPI-0.4; (b) UPE-0.4

568 Fig. 17. Overall deflection of double-bay beam: (a) UPI-0.65; (b) TSUPI-0.65

569 Fig. 18. Horizontal deformation in side column: (a) TSUPE-0.4; (b) TSUPI-0.4

570 Fig. 19. Strain distribution in beam longitudinal reinforcement of UPE-0.4: (a) bottom rebar; (b) top 

571 rebar

572 Fig. 20. Strain distribution in beam longitudinal reinforcement of UPI-0.4: (a) bottom rebar; (b) top 

573 rebar

574 Fig. 21. Strain distribution in beam longitudinal reinforcement of TSUPI-0.4: (a) bottom rebar; (b) 

575 top rebar
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576 Fig. 22. Total prestressing forces-displacement relationship

577 Fig. 23. Discussion of each design variable: (a) TSUPI-0.4; (b) TSUPE-0.4; (c) TSUPI-0.65

578 Fig. 24. Dynamic resistance of tested specimens

579 Fig. 25. Load resisting mechanism of RC structure: (a) compressive arch action; (b) tensile catenary 

580 action

581 Fig. 26. Load resisting mechanisms of specimens with unbonded post-tensioning connection: (a) 

582 small deformation; (b) MJD beyond one beam depth

583 Fig. 27. Resistance decomposition of specimen UPI-0.65

584 Fig. 28 Load resisting mechanism of specimens with hybrid connection 
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620
621 Table 1. Relationship between prototype frames and corresponding test specimens
622

Prototype frame Test specimen

Test ID

Column 
(mm × mm)

Beam   
(mm × mm)

Diameter 
of strands 

(mm)

Column
 (mm × mm)

Beam 
(mm × mm)

Diameter 
of strands 

(mm)
TSE 500×500 500×300 N/A 250×250 250×150 N/A
TSI 500×500 500×300 N/A 250×250 250×150 N/A
UPE-0.4 500×500 500×300 4×17.8 250×250 250×150 2×12.7
UPE-0.65 500×500 500×300 4×17.8 250×250 250×150 2×12.7
UPI-0.4 500×500 500×300 4×17.8 250×250 250×150 2×12.7
UPI-0.65 500×500 500×300 4×17.8 250×250 250×150 2×12.7
TSUPI-0.4 500×500 500×300 4×17.8 250×250 250×150 2×12.7
TSUPI-0.65 500×500 500×300 4×17.8 250×250 250×150 2×12.7

623
624
625
626 Table 2. Specimens properties
627

Test ID

Span/depth 
ratio

Axial 
compression 

ratio 

Top (Bottom) 
beam rebar 

ratio ρ

Column 
rebar ratio 

ρ

Effective 
prestress

Top-seat 
angle

Overhanging 
beam

TSE 12 0.2 0.6% (0.6%) 1.4% N/A L160×12 N/A
TSI 12 0.2 0.6% (0.6%) 1.4% N/A L160×12 Yes
UPE-0.4 12 0.2 0.6% (0.6%) 1.4% 0.4fpu N/A N/A
UPI-0.4 12 0.2 0.6% (0.6%) 1.4% 0.4fpu N/A Yes
UPI-0.65 12 0.2 0.6% (0.6%) 1.4% 0.65fpu N/A Yes
TSUPE-0.4 12 0.2 0.6% (0.6%) 1.4% 0.4fpu L160×12 N/A
TSUPI-0.4 12 0.2 0.6% (0.6%) 1.4% 0.4fpu L160×12 Yes
TSUPI-0.65 12 0.2 0.6% (0.6%) 1.4% 0.65fpu L160×12 Yes

628 Note: fpu is the nominal ultimate strength of the post-tensioning strands (1860 MPa); rebar ratio is determined using 
629 equation ρ = As/bd0, in which As, b and d0 represent the area of rebar, width and the effective depth of beam cross 
630 sections, respectively.
631
632
633 Table 3. Material properties
634

Item

Nominal 
diameter

(mm)

Yield 
strength 
(MPa)

Ultimate 
strength
(MPa)

Elastic 
modulus 
(MPa)

Elongation 
(%)

Transverse reinforcements R6 6 368 485 162,000 20.1
Longitudinal reinforcements T12 12 462 596 171,000 14.7
Longitudinal reinforcements T16 16 466 604 182,000 17.0
Posttensioning strands 12.7 1,649 1,970 213,000 6.3

635
636
637
638
639
640
641
642
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643
644
645 Table 4. Summary of test results
646

Critical displacement 
(mm)

Critical load (kN)

Specimen 
identifier First peak 

load
Ultimate 

load
First peak 

load
Ultimate 

load

Maximum
prestressing force        

(kN)

Maximum
horizontal 

compressive/tensile 
force (kN)

TSE 70 70 12 12 N/A -37/18
TSI 100 100 12 12 N/A -44/3
UPE-0.4 45 540 30 73 269 -66/139
UPI-0.4 29 652 35 151 324 -96/323
UPI-0.65 39 542 44 131 326 -84/321
TSUPE-0.4 100 522 49 83 277 -50/146
TSUPI-0.4 95 600 51 181 364 -93/380
TSUPI-0.65 76 600 64 178 368 -113/364

647
648
649
650

651            
652 (a)                                                          (b)
653
654 Fig. 1. Bending moment diagram of a frame: (a) before removal of column; (b) after removal of 
655 column
656

657

Unbonded Strands

15 mm
Grouting pad

Unbonded Strands

Top-seat angle15 mm
Grouting pad

Unbonded Strands Top-seat angle

15 mm
Grouting pad

658 (a)                                                 (b)                                                   (c)
659 Fig. 2. Test connections: (a) unbonded post-tensioning connection; (b) hybrid connection; (c) bolted 

660 top-seat angle connection

661
662
663
664
665
666
667
668
669
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679 Fig. 3. Details of test specimens: (a) TSUPI; (b) UPE; (c) cross sections
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687 Fig. 4. Stress-strain constitutive curves: (a) rebar; (b) post-tensioning strands
688    
689



26

690
691
692

693
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697 Fig. 5. Test setup and instrumentation: (a) photo; (b) elevation view
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824 Fig. 16. Contribution of horizontal reaction force from each constraint: (a) UPI-0.4; (b) UPE-0.4
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852 Fig. 17. Overall deflection of double-bay beam: (a) UPI-0.65; (b) TSUPI-0.65
853

854            
0

250

500

750

1000

1250

1500

1750

2000

-10 -5 0 5 10 15 20 25 30

LV
D

T
 P

os
iti

on
s (

m
m

)

Horizontal Movement (mm)

100 mm
250 mm
300 mm
400 mm
500 mm

Beam Axis

RC Column Top

Pin Support

Outward Inward

     
0

250

500

750

1000

1250

1500

1750

2000

-10 -5 0 5 10 15 20 25 30

LV
D

T
 P

os
iti

on
s (

m
m

)

Horizontal Movement (mm)

100 mm
250 mm
300 mm
400 mm
500 mm

Beam Axis

RC Column Top

Pin Support

Outward Inward

855
856                                                      (a)                                                            (b)
857 Fig. 18. Horizontal deformation in side column: (a) TSUPE-0.4; (b) TSUPI-0.4
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867 Fig. 19. Strain distribution in beam longitudinal reinforcement of UPE-0.4: (a) bottom rebar; (b) top 
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940 Fig. 23. Discussion of each design variable: (a) TSUPI-0.4; (b) TSUPE-0.4; (c) TSUPI-0.65
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952 Fig. 24. Dynamic resistance of tested specimens
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980 Fig. 26. Load resisting mechanisms of specimens with unbonded post-tensioning connection: (a) 
981 small deformation; (b) MJD beyond one beam depth
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