3,604 research outputs found

    Cosmological perturbations and noncommutative tachyon inflation

    Full text link
    The motivation for studying the rolling tachyon and non-commutative inflation comes from string theory. In the tachyon inflation scenario, metric perturbations are created by tachyon field fluctuations during inflation. We drive the exact mode equation for scalar perturbation of the metric and investigate the cosmological perturbations in the commutative and non-commutative inflationary spacetime driven by the tachyon field which have a Born-Infeld Lagrangian.Comment: 6 two-column pages, no figur

    The CP-violating asymmetry in \eta\to\pi^+ \pi^- e^+e^-

    Full text link
    We study the CP-violating asymmetry {\cal A}_{\rm CP}, which arises, in \eta\to\pi^+\pi^- e^+e^-, from the angular correlation of the e^+ e^- and \pi^+\pi^- planes due to the interference between the magnetic and electric decay amplitudes. With the phenomenologically determined magnetic amplitude and branching ratio as input, the asymmetry, induced by the electric bremsstrahlung amplitude through the CP-violating decay \eta\to\pi^+\pi^-, and by an unconventional tensor type operator, has been estimated respectively. The upper bound of {\cal A}_{\rm CP} from the former is about 10^{-3}, and the asymmetry from the latter might be up to O(10^{-2}). One can therefore expect that this CP asymmetry would be an interesting CP-violating observable for the future precise measurements in the \eta factories.Comment: LaTeX, 6 pages. One reference corrected, and some new references adde

    Intraosseous Schwannoma of the Jaws: An Updated Review of the Literature and Report of 2 New Cases Affecting the Mandible

    Full text link
    Schwannomas are benign nerve sheath neoplasms composed almost entirely of Schwann cells. These tumors most often arise in the soft tissues of the head and neck. However, seldom do they occur within bone. This article presents a rare case of a recurrent intraosseous schwannoma of the anterior mandible and another case of a posterior intraosseous mandibular schwannoma accessed via a sagittal split ramus osteotomy. Furthermore, we provide an updated review of the literature on intraosseous schwannomas affecting the mandible and maxilla

    Type-1.5 Superconductors

    Full text link
    We demonstrate the existence of a novel superconducting state in high quality two-component MgB2 single crystalline superconductors where a unique combination of both type-1 (kappa_1 0.707) superconductor conditions is realized for the two components of the order parameter. This condition leads to a vortex-vortex interaction attractive at long distances and repulsive at short distances, which stabilizes unconventional stripe- and gossamer-like vortex patterns that we have visualized in this type-1.5 superconductor using Bitter decoration and also reproduced in numerical simulations.Comment: accepted in Phys. Rev. Let

    Synthesis and characterization of hybrid organic-inorganic materials based on sulphonated polyamideimide and silica

    Get PDF
    The preparation of hybrid organic–inorganic membrane materials based on a sulphonated polyamideimide resin and silica filler has been studied. The method allows the sol–gel process to proceed in the presence of a high molecular weight polyamideimide, resulting in well dispersed silica nanoparticles (<50 nm) within the polymer matrix with chemical bonding between the organic and inorganic phases. Tetraethoxysilane (TEOS) was used as the silica precursor and the organosilicate networks were bonded to the polymer matrix via a coupling agent aminopropyltriethoxysilane (APTrEOS). The structure and properties of these hybrid materials were characterized via a range of techniques including FTIR, TGA, DSC, SEM and contact angle analysis. It was found that the compatibility between organic and inorganic phases has been greatly enhanced by the incorporation of APTrEOS. The thermal stability and hydrophilic properties of hybrid materials have also been significantly improved

    Post-Translational Modification Biology of Glutamate Receptors and Drug Addiction

    Get PDF
    Post-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling, and protein–protein interactions), subcellular redistribution (trafficking, endocytosis, synaptic delivery, and clustering), and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamine). Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction

    The Smelling Principle of Vetiver Oil, Unveiled by Chemical Synthesis

    Get PDF
    Vetiver oil, produced on a multiton‐scale from the roots of vetiver grass, is one of the finest and most popular perfumery materials, appearing in over a third of all fragrances. It is a complex mixture of hundreds of molecules and the specific odorant, responsible for its characteristic suave and sweet transparent, woody‐ambery smell, has remained a mystery until today. Herein, we prove by an eleven‐step chemical synthesis, employing a novel asymmetric organocatalytic Mukaiyama–Michael addition, that (+)‐2‐epi‐ziza‐6(13)en‐3‐one is the active smelling principle of vetiver oil. Its olfactory evaluation reveals a remarkable odor threshold of 29 picograms per liter air, responsible for the special sensuous aura it lends to perfumes and the quasi‐pheromone‐like effect it has on perfumers and consumers alike
    corecore