221 research outputs found

    Divergence Time Estimation Using Fossils as Terminal Taxa and the Origins of Lissamphibia

    Get PDF
    Were molecular data available for extinct taxa, questions regarding the origins of many groups could be settled in short order. As this is not the case, various strategies have been proposed to combine paleontological and neontological data sets. The use of fossil dates as node age calibrations for divergence time estimation from molecular phylogenies is commonplace. In addition, simulations suggest that the addition of morphological data from extinct taxa may improve phylogenetic estimation when combined with molecular data for extant species, and some studies have merged morphological and molecular data to estimate combined evidence phylogenies containing both extinct and extant taxa. However, few, if any, studies have attempted to estimate divergence times using phylogenies containing both fossil and living taxa sampled for both molecular and morphological data. Here, I infer both the phylogeny and the time of origin for Lissamphibia and a number of stem tetrapods using Bayesian methods based on a data set containing morphological data for extinct taxa, molecular data for extant taxa, and molecular and morphological data for a subset of extant taxa. The results suggest that Lissamphibia is monophyletic, nested within Lepospondyli, and originated in the late Carboniferous at the earliest. This research illustrates potential pitfalls for the use of fossils as post hoc age constraints on internal nodes and highlights the importance of explicit phylogenetic analysis of extinct taxa. These results suggest that the application of fossils as minima or maxima on molecular phylogenies should be supplemented or supplanted by combined evidence analyses whenever possible

    A control theorem for pp-adic automorphic forms and Teitelbaum's L\mathcal{L}-invariant

    Full text link
    In this article, we describe an efficient method for computing Teitelbaum's pp-adic L\mathcal{L}-invariant. These invariants are realized as the eigenvalues of the L\mathcal{L}-operator acting on a space of harmonic cocycles on the Bruhat-Tits tree T\mathcal{T}, which is computable by the methods of Franc and Masdeu described in \cite{fm}. The main difficulty in computing the L\mathcal{L}-operator is the efficient computation of the pp-adic Coleman integrals in its definition. To solve this problem, we use overconvergent methods, first developed by Darmon, Greenberg, Pollack and Stevens. In order to make these methods applicable to our setting, we prove a control theorem for pp-adic automorphic forms of arbitrary even weight. Moreover, we give computational evidence for relations between slopes of L\mathcal{L}-invariants of different levels and weights for p=2p=2.Comment: 26 page

    Claims of Potential Expansion throughout the U.S. by Invasive Python Species Are Contradicted by Ecological Niche Models

    Full text link
    Background Recent reports from the United States Geological Survey (USGS) suggested that invasive Burmese pythons in the Everglades may quickly spread into many parts of the U.S. due to putative climatic suitability. Additionally, projected trends of global warming were predicted to significantly increase suitable habitat and promote range expansion by these snakes. However, the ecological limitations of the Burmese python are not known and the possible effects of global warming on the potential expansion of the species are also unclear. Methodology/Principal Findings Here we show that a predicted continental expansion is unlikely based on the ecology of the organism and the climate of the U.S. Our ecological niche models, which include variables representing climatic extremes as well as averages, indicate that the only suitable habitat in the U.S. for Burmese pythons presently occurs in southern Florida and in extreme southern Texas. Models based on the current distribution of the snake predict suitable habitat in essentially the only region in which the snakes are found in the U.S. Future climate models based on global warming forecasts actually indicate a significant contraction in suitable habitat for Burmese pythons in the U.S. as well as in their native range. Conclusions/Significance The Burmese python is strongly limited to the small area of suitable environmental conditions in the United States it currently inhabits due to the ecological niche preferences of the snake. The ability of the Burmese python to expand further into the U.S. is severely limited by ecological constraints. Global warming is predicted to significantly reduce the area of suitable habitat worldwide, underscoring the potential negative effects of climate change for many species

    Cryptic, sympatric diversity in Tegu lizards of the Tupinambis teguixin Group (Squamata, Sauria, Teiidae) and the description of three new species

    Get PDF
    Tegus of the genera Tupinambis and Salvator are the largest Neotropical lizards and the most exploited clade of Neotropical reptiles. For three decades more than 34 million tegu skins were in trade, about 1.02 million per year. The genus Tupinambis is distributed in South America east of the Andes, and currently contains four recognized species, three of which are found only in Brazil. However, the type species of the genus, T. teguixin, is known from Bolivia, Brazil, Colombia, Ecuador, French Guyana, Guyana, Peru, Suriname, Trinidad and Tobago, and Venezuela (including the Isla de Margarita). Here we present molecular and morphological evidence that this species is genetically divergent across its range and identify four distinct clades some of which are sympatric. The occurrence of cryptic sympatric species undoubtedly exacerbated the nomenclatural problems of the past. We discuss the species supported by molecular and morphological evidence and increase the number of species in the genus Tupinambis to seven. The four members of the T. teguixin group continue to be confused with Salvator merianae, despite having a distinctly different morphology and reproductive mode. All members of the genus Tupinambis are CITES Appendix II. Yet, they continue to be heavily exploited, under studied, and confused in the minds of the public, conservationists, and scientists

    Multilocus environmental adaptation and population structure in the Cerrado gecko Gymnodactylus amarali (Sauria, Phyllodactylidae) from Serra da Mesa Hydroelectric Plant, Central Brazil

    Get PDF
    Contrasting environmental conditions across geographic space might promote divergent selection, making adaptation to local biotic and abiotic conditions necessary for populations to survive. In order to understand how populations adapt to different environmental conditions, studies of local adaptation have been largely used as an interface to address ecological and evolutionary questions. Here, we studied populations of Gymnodactylus amarali (Phyllodactylidae) isolated in rapidly created artificial islands. We combined a genotyping-by-sequence (GBS) survey and redundancy analyses (RDA) to investigate genotype–environment associations (GEA), while DAPC, Fst, and Admixture analyses were used to determine genetic structure. Our hypothesis is that G. amarali populations on the islands are going through a local adaptation process and consequently becoming genetically different from the populations on the mainland. Our results indicate that geographic and environmental differences are related to genetic variation, as we detected the presence of two or three distinct genetic lineages in Serra da Mesa, Minaçu, and Colinas do Sul. Fst analysis shows moderate isolation between Serra da Mesa and Minaçu (0.082). The RDA pointed out potential local genetic signal correlated with temperature and precipitation. We identified 230 candidate loci associated with the environment and at least two locally structured subpopulations (Serra da Mesa and Minaçu) show significant association with environmental variation

    Claims of Potential Expansion throughout the U.S. by Invasive Python Species Are Contradicted by Ecological Niche Models

    Get PDF
    BACKGROUND: Recent reports from the United States Geological Survey (USGS) suggested that invasive Burmese pythons in the Everglades may quickly spread into many parts of the U.S. due to putative climatic suitability. Additionally, projected trends of global warming were predicted to significantly increase suitable habitat and promote range expansion by these snakes. However, the ecological limitations of the Burmese python are not known and the possible effects of global warming on the potential expansion of the species are also unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that a predicted continental expansion is unlikely based on the ecology of the organism and the climate of the U.S. Our ecological niche models, which include variables representing climatic extremes as well as averages, indicate that the only suitable habitat in the U.S. for Burmese pythons presently occurs in southern Florida and in extreme southern Texas. Models based on the current distribution of the snake predict suitable habitat in essentially the only region in which the snakes are found in the U.S. Future climate models based on global warming forecasts actually indicate a significant contraction in suitable habitat for Burmese pythons in the U.S. as well as in their native range. CONCLUSIONS/SIGNIFICANCE: The Burmese python is strongly limited to the small area of suitable environmental conditions in the United States it currently inhabits due to the ecological niche preferences of the snake. The ability of the Burmese python to expand further into the U.S. is severely limited by ecological constraints. Global warming is predicted to significantly reduce the area of suitable habitat worldwide, underscoring the potential negative effects of climate change for many species

    Phylogenomics Reveals Ancient Gene Tree Discordance in the Amphibian Tree of Life

    Get PDF
    The Author(s) 2020. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. Molecular phylogenies have yielded strong support for many parts of the amphibian Tree of Life, but poor support for the resolution of deeper nodes, including relationships among families and orders. To clarify these relationships, we provide a phylogenomic perspective on amphibian relationships by developing a taxon-specific Anchored Hybrid Enrichment protocol targeting hundreds of conserved exons which are effective across the class. After obtaining data from 220 loci for 286 species (representing 94% of the families and 44% of the genera), we estimate a phylogeny for extant amphibians and identify gene tree-species tree conflict across the deepest branches of the amphibian phylogeny. We perform locus-by-locus genealogical interrogation of alternative topological hypotheses for amphibian monophyly, focusing on interordinal relationships. We find that phylogenetic signal deep in the amphibian phylogeny varies greatly across loci in a manner that is consistent with incomplete lineage sorting in the ancestral lineage of extant amphibians. Our results overwhelmingly support amphibian monophyly and a sister relationship between frogs and salamanders, consistent with the Batrachia hypothesis. Species tree analyses converge on a small set of topological hypotheses for the relationships among extant amphibian families. These results clarify several contentious portions of the amphibian Tree of Life, which in conjunction with a set of vetted fossil calibrations, support a surprisingly younger timescale for crown and ordinal amphibian diversification than previously reported. More broadly, our study provides insight into the sources, magnitudes, and heterogeneity of support across loci in phylogenomic data sets.[AIC; Amphibia; Batrachia; Phylogeny; gene tree-species tree discordance; genomics; information theory.].This work was supported by grants from a graduate student research award from the Society of Systematic Biologists and the University of Kentucky G.F. Ribble Endowment (to P.M.H.), by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/BEX 2806/09-6 to P.L.V.P.), and by the National Science Foundation (DEB-0949532 and DEB-1355000 to D.W.W., DEB-1120516 to E.M.L., IIP-1313554 to A.R.L. and E.M.L, DEB-1355071 to J.M.B., DEB-1441719 to R.A.P., DEB-1311442 to P.L.V.P., DEB-1354506 to R.C.T., DEB-1021247 to E.P. and C.J.R., DEB-1021299 to K.M. Kjer, and DEB-1257610, DEB-0641023, DEB-0423286, and DEB-9984496 to C.J.R.), and the Australian Research Council (DP120104146 to J.S.K. and S.C.D.). S.R.R. thanks SENESCYT (Arca de Noé Initiative; SRR and O. Torres-Carvajal principal investigators) for funding for tissue collection. J.L. was supported by the Systematics Association and the Linnean Society Systematics Research Fund. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program (DGE-3048109801 to P.M.H.) and by the National Science Foundation-supported National Center for Supercomputing Applications Blue Waters Graduate Research Fellowship Program (under Grant No. 0725070, subaward 15836, to P.M.H.). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation

    Phylogenomics Reveals Ancient Gene Tree Discordance in the Amphibian Tree of Life

    Get PDF
    Molecular phylogenies have yielded strong support for many parts of the amphibian Tree of Life, but poor support for the resolution of deeper nodes, including relationships among families and orders. To clarify these relationships, we provide a phylogenomic perspective on amphibian relationships by developing a taxon-specific Anchored Hybrid Enrichment protocol targeting hundreds of conserved exons which are effective across the class. After obtaining data from 220 loci for 286 species (representing 94% of the families and 44% of the genera), we estimate a phylogeny for extant amphibians and identify gene tree–species tree conflict across the deepest branches of the amphibian phylogeny. We perform locus-by-locus genealogical interrogation of alternative topological hypotheses for amphibian monophyly, focusing on interordinal relationships. We find that phylogenetic signal deep in the amphibian phylogeny varies greatly across loci in a manner that is consistent with incomplete lineage sorting in the ancestral lineage of extant amphibians. Our results overwhelmingly support amphibian monophyly and a sister relationship between frogs and salamanders, consistent with the Batrachia hypothesis. Species tree analyses converge on a small set of topological hypotheses for the relationships among extant amphibian families. These results clarify several contentious portions of the amphibian Tree of Life, which in conjunction with a set of vetted fossil calibrations, support a surprisingly younger timescale for crown and ordinal amphibian diversification than previously reported. More broadly, our study provides insight into the sources, magnitudes, and heterogeneity of support across loci in phylogenomic data sets

    Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling

    Get PDF
    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models
    • …
    corecore