39 research outputs found

    Using NuRadioMC to study the performance of UHE radio neutrino detectors

    Get PDF
    NuRadioMC is an open-source, Python-based simulation and reconstruction framework for radio detectors of ultra-high energy neutrinos and cosmic rays. Its modular design makes NuRadioMC suitable for use with a range of past, current and future detectors. In addition, the recent deployment of a complete documentation as well as a pip release make NuRadioMC relatively easy to learn and use. Here, we outline the features currently available and under development in NuRadioMC, with a focus on its usage to simulate and study in-ice radio neutrino detectors

    In situ, broadband measurement of the radio frequency attenuation length at Summit Station, Greenland

    Full text link
    Over the last 25 years, radiowave detection of neutrino-generated signals, using cold polar ice as the neutrino target, has emerged as perhaps the most promising technique for detection of extragalactic ultra-high energy neutrinos (corresponding to neutrino energies in excess of 0.01 Joules, or 101710^{17} electron volts). During the summer of 2021 and in tandem with the initial deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted radioglaciological measurements at Summit Station, Greenland to refine our understanding of the ice target. We report the result of one such measurement, the radio-frequency electric field attenuation length LαL_\alpha. We find an approximately linear dependence of LαL_\alpha on frequency with the best fit of the average field attenuation for the upper 1500 m of ice: Lα=((1154±121)(0.81±0.14)(ν/\langle L_\alpha \rangle = \big( (1154 \pm 121) - (0.81 \pm 0.14) (\nu/MHz)))\big) m for frequencies ν[145350]\nu \in [145 - 350] MHz.Comment: 13 pages, 8 figures, Accepted to Journal of Glaciolog

    Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G)

    Full text link
    This article presents the design of the Radio Neutrino Observatory Greenland (RNO-G) and discusses its scientific prospects. Using an array of radio sensors, RNO-G seeks to measure neutrinos above 10 PeV by exploiting the Askaryan effect in neutrino-induced cascades in ice. We discuss the experimental considerations that drive the design of RNO-G, present first measurements of the hardware that is to be deployed and discuss the projected sensitivity of the instrument. RNO-G will be the first production-scale radio detector for in-ice neutrino signals.Comment: 51 pages, 27 figures, prepared for JINS

    Precision measurement of the index of refraction of deep glacial ice at radio frequencies at Summit Station, Greenland

    Full text link
    Glacial ice is used as a target material for the detection of ultra-high energy neutrinos, by measuring the radio signals that are emitted when those neutrinos interact in the ice. Thanks to the large attenuation length at radio frequencies, these signals can be detected over distances of several kilometers. One experiment taking advantage of this is the Radio Neutrino Observatory Greenland (RNO-G), currently under construction at Summit Station, near the apex of the Greenland ice sheet. These experiments require a thorough understanding of the dielectric properties of ice at radio frequencies. Towards this goal, calibration campaigns have been undertaken at Summit, during which we recorded radio reflections off internal layers in the ice sheet. Using data from the nearby GISP2 and GRIP ice cores, we show that these reflectors can be associated with features in the ice conductivity profiles; we use this connection to determine the index of refraction of the bulk ice as n=1.778 +/- 0.006

    Simulation and sensitivities for a phased IceCube-Gen2 deployment

    Get PDF

    A next-generation optical sensor for IceCube-Gen2

    Get PDF

    Optimization of the optical array geometry for IceCube-Gen2

    Get PDF

    Concept Study of a Radio Array Embedded in a Deep Gen2-like Optical Array

    Get PDF

    Sensitivity studies for the IceCube-Gen2 radio array

    Get PDF

    Simulation study for the future IceCube-Gen2 surface array

    Get PDF
    corecore