33 research outputs found

    Treatment of acute pain in cats

    Get PDF
    The cat's popularity as a pet continues to grow, with the most recent surveys showing approximately 17% of the population live with cats. This increased popularity of cats invariably means that more cats are presented to veterinary surgeons for surgery and treatment of painful conditions, but it seems that the treatment of pain in the cat has lagged behind that of other species. Lack of analgesic administration may well stem from the difficulties in assessing pain in the cat, but is probably compounded by the false perceptions of the likelihood of severe side effects occurring more frequently with the use of opioids and non-steroidal anti-inflammatory drugs in cats, thereby inadvertently denying them the analgesics they require. This article complements a previous article covering the assessment of acute pain in the cat (White, 2016); the aim of this second article is to provide an evidence-based framework to follow for the treatment of acute pain in the cat

    Pharmacokinetics of tramadol following intravenous and oral administration in male rhesus macaques (Macaca mulatta)

    No full text
    Recently, tramadol and its active metabolite, O-desmethyltramadol (M1), have been studied as analgesic agents in various traditional veterinary species (e.g., dogs, cats, etc.). This study explores the pharmacokinetics of tramadol and M1 after intravenous (IV) and oral (PO) administration in rhesus macaques (Macaca mulatta), a nontraditional veterinary species. Rhesus macaques are Old World monkeys that are commonly used in biomedical research. Effects of tramadol administration to monkeys are unknown, and research veterinarians may avoid inclusion of this drug into pain management programs due to this limited knowledge. Four healthy, socially housed, adult male rhesus macaques (Macaca mulatta) were used in this study. Blood samples were collected prior to, and up to 10 h post-tramadol administration. Serum tramadol and M1 were analyzed using liquid chromatography-mass spectrometry. Noncompartmental pharmacokinetic analysis was performed. Tramadol clearance was 24.5 (23.4-32.7) mL/min/kg. Terminal half-life of tramadol was 111 (106-127) min IV and 133 (84.9-198) min PO. Bioavailability of tramadol was poor [3.47% (2.14-5.96%)]. Maximum serum concentration of M1 was 2.28 (1.88-2.73) ng/mL IV and 11.2 (9.37-14.9) ng/mL PO. Sedation and pruritus were observed after IV administration

    Effects of methadone on the minimum anesthetic concentration of isoflurane, and its effects on heart rate, blood pressure and ventilation during isoflurane anesthesia in hens (Gallus gallus domesticus)

    Get PDF
    © 2016 Escobar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The aim of this study was to measure the temporal effects of intramuscular methadone administration on the minimum anesthetic concentration (MAC) of isoflurane in hens, and to evaluate the effects of the isoflurane-methadone combination on heart rate and rhythm, blood pressure and ventilation. Thirteen healthy adult hens weighing 1.7 ± 0.2 kg were used. The MAC of isoflurane was determined in each individual using the bracketing method. Subsequently, the reduction in isoflurane MAC produced by methadone (3 or 6 mg kg -1 , IM) was determined by the up-and-down method. Stimulation was applied at 15 and 30 minutes, and at 45 minutes if the bird had not moved at 30 minutes. Isoflurane MAC reduction was calculated at each time point using logistic regression. After a washout period, birds were anesthetized with isoflurane and methadone, 6 mg kg -1 IM was administered. Heart rate and rhythm, respiratory rate, blood gas values and invasive blood pressure were measured at 1.0 and 0.7 isoflurane MAC, and during 45 minutes after administration of methadone once birds were anesthetized with 0.7 isoflurane MAC. Fifteen minutes after administration of 3 mg kg -1 of methadone, isoflurane MAC was reduced by 2 (-9 to 13)% [logistic regression estimate (95% Wald confidence interval)]. Administration of 6 mg kg -1 of methadone decreased isoflurane MAC by 29 (11 to 46)%, 27 (-3 to 56)% and 10 (-8 to 28)% after 15,30 and 45 minutes, respectively. Methadone (6 mg kg -1 ) induced atrioventricular block in three animals and ventricular premature contractions in two. Methadone caused an increase in arterial blood pressure and arterial partial pressure of carbon dioxide, while heart rate and pH decreased. Methadone, 6 mg kg -1 IM significantly reduced isoflurane MAC by 30% in hens 15 minutes after administration. At this dose, methadone caused mild respiratory acidosis and increase in systemic blood pressure
    corecore