43 research outputs found
Representation of tropical deep convection in atmospheric models - Part 1 : Meteorology and comparison with satellite observations
Published under Creative Commons Licence 3.0. Original article can be found at : http://www.atmospheric-chemistry-and-physics.net/ "The author's copyright for this publication is transferred to University of Hertfordshire".Fast convective transport in the tropics can efficiently redistribute water vapour and pollutants up to the upper troposphere. In this study we compare tropical convection characteristics for the year 2005 in a range of atmospheric models, including numerical weather prediction (NWP) models, chemistry transport models (CTMs), and chemistry-climate models (CCMs). The model runs have been performed within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere) project. The characteristics of tropical convection, such as seasonal cycle, land/sea contrast and vertical extent, are analysed using satellite observations as a benchmark for model simulations. The observational datasets used in this work comprise precipitation rates, outgoing longwave radiation, cloud-top pressure, and water vapour from a number of independent sources, including ERA-Interim analyses. Most models are generally able to reproduce the seasonal cycle and strength of precipitation for continental regions but show larger discrepancies with observations for the Maritime Continent region. The frequency distribution of high clouds from models and observations is calculated using highly temporally-resolved (up to 3-hourly) cloud top data. The percentage of clouds above 15 km varies significantly between the models. Vertical profiles of water vapour in the upper troposphere-lower stratosphere (UTLS) show large differences between the models which can only be partly attributed to temperature differences. If a convective plume reaches above the level of zero net radiative heating, which is estimated to be ~15 km in the tropics, the air detrained from it can be transported upwards by radiative heating into the lower stratosphere. In this context, we discuss the role of tropical convection as a precursor for the transport of short-lived species into the lower stratosphere.Peer reviewe
PAM50 molecular intrinsic subtypes in the nurses' health Study cohorts
Background: Modified median and subgroup-specific gene subtypes by PAM50 and IHC surrogates improved to fair centering are two essential preprocessing methods to assign when Luminal subtypes were grouped together. Using the breast cancer molecular subtypes by PAM50. We evaluated the modified median method, our study consisted of 46% PAM50 subtypes derived from both methods in a subset of Luminal A, 18% Luminal B, 14% HER2-enriched, 15% Nurses' Health Study (NHS) and NHSII participants; correlat-Basal-like, and 8% Normal-like subtypes; 53% of tumor-ed tumor subtypes by PAM50 with IHC surrogates; and adjacent tissues were Normal-like. Women with the Basal-characterized the PAM50 subtype distribution, proliferation like subtype had a higher rate of relapse within 5 years. scores, and risk of relapse with proliferation and tumor size HER2-enriched subtypes had poorer outcomes prior to weighted (ROR-PT) scores in the NHS/NHSII. 1999. Methods: PAM50 subtypes, proliferation scores, and Conclusions: Either preprocessing method may be uti-ROR-PT scores were calculated for 882 invasive breast tumors lized to derive PAM50 subtypes for future studies. The and 695 histologically normal tumor-adjacent tissues. Cox majority of NHS/NHSII tumor and tumor-adjacent tissues proportional hazards models evaluated the relationship were classified as Luminal A and Normal-like, respectively. between PAM50 subtypes or ROR-PT scores/groups with Impact: Preprocessing methods are important for the recurrence-free survival (RFS) or distant RFS. accurate assignment of PAM50 subtypes. These data provide Results: PAM50 subtypes were highly comparable evidence that either preprocessing method can be used in between the two methods. The agreement between tumor epidemiologic studies
Energy loss due to defect formation from 206Pb recoils in SuperCDMS germanium detectors
The Super Cryogenic Dark Matter Search experiment at the Soudan Underground Laboratory studied energy loss associated with defect formation in germanium crystals at mK temperatures using in situ 210Pb sources. We examine the spectrum of 206Pb nuclear recoils near its expected 103 keV endpoint energy and determine an energy loss of (6:08 ± 0:18)%, which we attribute to defect formation. From this result and using TRIM simulations, we extract the first experimentally determined average displacement threshold energy of 19.7+0.6−0.5 eV for germanium. This has implications for the analysis thresholds of future germanium-based dark matter searches
ESMO / ASCO Recommendations for a Global Curriculum in Medical Oncology Edition 2016
The European Society for Medical Oncology (ESMO) and the American Society of Clinical Oncology (ASCO) are publishing a new edition of the ESMO/ASCO Global Curriculum (GC) thanks to contribution of 64 ESMO-appointed and 32 ASCO-appointed authors. First published in 2004 and updated in 2010, the GC edition 2016 answers to the need for updated recommendations for the training of physicians in medical oncology by defining the standard to be fulfilled to qualify as medical oncologists. At times of internationalisation of healthcare and increased mobility of patients and physicians, the GC aims to provide state-of-the-art cancer care to all patients wherever they live. Recent progress in the field of cancer research has indeed resulted in diagnostic and therapeutic innovations such as targeted therapies as a standard therapeutic approach or personalised cancer medicine apart from the revival of immunotherapy, requiring specialised training for medical oncology trainees. Thus, several new chapters on technical contents such as molecular pathology, translational research or molecular imaging and on conceptual attitudes towards human principles like genetic counselling or survivorship have been integrated in the GC. The GC edition 2016 consists of 12 sections with 17 subsections, 44 chapters and 35 subchapters, respectively. Besides renewal in its contents, the GC underwent a principal formal change taking into consideration modern didactic principles. It is presented in a template-based format that subcategorises the detailed outcome requirements into learning objectives, awareness, knowledge and skills. Consecutive steps will be those of harmonising and implementing teaching and assessment strategies
Tropical convective transport and the Walker circulation
We introduce a methodology to visualise rapid vertical and zonal tropical transport pathways. Using prescribed sea-surface temperatures in four monthly model integrations for 2005, we characterise preferred transport routes from the troposphere to the stratosphere in a high resolution climate model. Most efficient transport is modelled over the Maritime Continent (MC) in November and February, i.e., boreal winter. In these months, the ascending branch of the Walker Circulation over the MC is formed in conjunction with strong deep convection, allowing fast transport into the stratosphere. In the model the upper tropospheric zonal winds associated with the Walker Circulation are also greatest in these months in agreement with ERA-Interim reanalysis data. We conclude that the Walker circulation plays an important role in the seasonality of fast tropical transport from the lower and middle troposphere to the upper troposphere and so impacts at the same time the potential supply of surface emissions to the tropical tropopause layer (TTL) and subsequently to the stratosphere
Will subglacial rhyolite eruptions be explosive or intrusive? Some insights from analytical models.
Simple analytical models of subglacial eruptions are presented, which simulate evolving subglacial cavities and volcanic edifices during rhyolitic eruptions beneath temperate glaciers. They show that the relative sizes of cavity and edifice may strongly influence the eruption mechanisms. Intrusive eruptions will occur if the edifice fills the cavity, with rising magma quenched within the edifice and slow melting of ice. Explosive magma-water interaction may occur if a water- or steam- filled gap develops above the edifice. Meltwater is assumed to drain away continuously, but any gap above the edifice will be filled by meltwater or steam. Ductile roof closure will occur if the glacier weight exceeds the cavity pressure and is modelled here using Nye�s law. The results show that the effusion rate is an important control on the eruption style, with explosive eruptions favoured by large effusion rates. The models are used to explain contrasting eruption mechanisms during various Quaternary subglacial rhyolite eruptions at Torfajökull, Iceland. Although the models are simplistic, they are first attempts to unravel the complex feedbacks between subglacial eruption mechanisms and glacier response that can lead to a variety of eruptive scenarios and associated hazards
Tropical deep convection and its impact on composition in global and mesoscale models - Part 2: Tracer transport
The tropical transport processes of 14 different models or model versions were compared, within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere) project. The tested models range from the regional to the global scale, and include numerical weather prediction (NWP), chemistry transport, and climate chemistry models. Idealised tracers were used in order to prevent the model's chemistry schemes from influencing the results substantially, so that the effects of modelled transport could be isolated. We find large differences in the vertical transport of very short lived tracers (with a lifetime of 6 hours) within the tropical troposphere. Peak convective outflow altitudes range from around 300 hPa to almost 100 hPa among the different models, and the upper tropospheric tracer mixing ratios differ by up to an order of magnitude. The timing of convective events is found to differ between the models, even among those which source their forcing data from the same NWP model (ECMWF). The differences are less pronounced for longer lived tracers, however they could have implications for the modelling of the halogen burden of the lowermost stratosphere through species such as bromoform, or for the transport of short lived hydrocarbons into the lowermost stratosphere. The modelled tracer profiles are found to be strongly influenced by the convective transport parameterisations, and boundary layer mixing parameterisations of the models. The location of rapid transport into the upper troposphere is similar among the models, and is mostly concentrated over the western Pacific, the Maritime Continent and the Indian Ocean. In contrast, none of the models indicates significant enhancement in upward transport over western Africa. The mean mixing ratios of an idealised CO like tracer in the upper tropical troposphere are found to be sensitive to the surface CO mixing ratios in the regions with the most active convection, revealing the importance of correctly modelling both the location of convective transport and the geographical pollutant emission patterns