364 research outputs found
Polaronic optical absorption in electron-doped and hole-doped cuprates
Polaronic features similar to those previously observed in the photoinduced
spectra of cuprates have been detected in the reflectivity spectra of
chemically doped parent compounds of high-critical-temperature superconductors,
both -type and -type. In NdCuO these features, whose
intensities depend both on doping and temperature, include local vibrational
modes in the far infrared and a broad band centered at 1000 cm.
The latter band is produced by the overtones of two (or three) local modes and
is well described in terms of a small-polaron model, with a binding energy of
about 500 cm. Most of the above infrared features are shown to survive
in the metallic phase of NdCeCu0, BiSrCuO, and
YBaCuO, where they appear as extra-Drude peaks. The occurrence
of polarons is attributed to local modes strongly coupled to carriers, as shown
by a comparison with tunneling results.Comment: File latex, 31 p., submitted to Physical Review B. Figures may be
faxed upon reques
Method for Measuring the Momentum-Dependent Relative Phase of the Superconducting Gap of High-Temperature Superconductors
The phase variation of the superconducting gap over the (normal) Fermi
surface of the high-temperature superconductors remains a significant
unresolved question. Is the phase of the gap constant, does it change sign, or
is it perhaps complex? A detailed answer to this question would provide
important constraints on various pairing mechanisms. Here we propose a new
method for measuring the relative gap PHASE on the Fermi surface which is
direct, is angle-resolved, and probes the bulk. The required experiments
involve measuring phonon linewidths in the normal and superconducting state,
with resolution available in current facilities. We primarily address the
La_1.85Sr_.15CuO_4 material, but also propose a more detailed study of a
specific phonon in Bi_2Sr_2CaCu_2O_8.Comment: 13 pages (revtex) + 5 figures (postscript-included), NSF-ITP-93-2
Linear Paul trap design for an optical clock with Coulomb crystals
We report on the design of a segmented linear Paul trap for optical clock
applications using trapped ion Coulomb crystals. For an optical clock with an
improved short-term stability and a fractional frequency uncertainty of 10^-18,
we propose 115In+ ions sympathetically cooled by 172Yb+. We discuss the
systematic frequency shifts of such a frequency standard. In particular, we
elaborate on high precision calculations of the electric radiofrequency field
of the ion trap using the finite element method. These calculations are used to
find a scalable design with minimized excess micromotion of the ions at a level
at which the corresponding second- order Doppler shift contributes less than
10^-18 to the relative uncertainty of the frequency standard
Prediction of Emerging Technologies Based on Analysis of the U.S. Patent Citation Network
The network of patents connected by citations is an evolving graph, which
provides a representation of the innovation process. A patent citing another
implies that the cited patent reflects a piece of previously existing knowledge
that the citing patent builds upon. A methodology presented here (i) identifies
actual clusters of patents: i.e. technological branches, and (ii) gives
predictions about the temporal changes of the structure of the clusters. A
predictor, called the {citation vector}, is defined for characterizing
technological development to show how a patent cited by other patents belongs
to various industrial fields. The clustering technique adopted is able to
detect the new emerging recombinations, and predicts emerging new technology
clusters. The predictive ability of our new method is illustrated on the
example of USPTO subcategory 11, Agriculture, Food, Textiles. A cluster of
patents is determined based on citation data up to 1991, which shows
significant overlap of the class 442 formed at the beginning of 1997. These new
tools of predictive analytics could support policy decision making processes in
science and technology, and help formulate recommendations for action
Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate
When a system crosses a second-order phase transition on a finite timescale,
spontaneous symmetry breaking can cause the development of domains with
independent order parameters, which then grow and approach each other creating
boundary defects. This is known as Kibble-Zurek mechanism. Originally
introduced in cosmology, it applies both to classical and quantum phase
transitions, in a wide variety of physical systems. Here we report on the
spontaneous creation of solitons in Bose-Einstein condensates via the
Kibble-Zurek mechanism. We measure the power-law dependence of defects number
with the quench time, and provide a check of the Kibble-Zurek scaling with the
sonic horizon. These results provide a promising test bed for the determination
of critical exponents in Bose-Einstein condensates.Comment: 7 pages, 4 figure
Neutron Scattering and the B_{1g} Phonon in the Cuprates
The momentum dependent lineshape of the out-of-phase oxygen vibration as
measured in recent neutron scattering measurements is investigated. Starting
from a microscopic coupling of the phonon vibration to a local crystal field,
the phonon lineshift and broadening is calculated as a function of transfered
momentum in the superconducting state of YBaCuO. It is shown
that the anisotropy of the density of states, superconducting energy gap, and
the electron-phonon coupling are all crucial in order to explain these
experiments.Comment: new figures and discussio
X-ray computed tomography for additive manufacturing: a review
In this review, the use of x-ray computed tomography (XCT) is examined, identifying the requirement for volumetric dimensional measurements in industrial verification of additively manufactured (AM) parts. The XCT technology and AM processes are summarised, and their historical use is documented. The use of XCT and AM as tools for medical reverse engineering is discussed, and the transition of XCT from a tool used solely for imaging to a vital metrological instrument is documented. The current states of the combined technologies are then examined in detail, separated into porosity measurements and general dimensional measurements. In the conclusions of this review, the limitation of resolution on improvement of porosity measurements and the lack of research regarding the measurement of surface texture are identified as the primary barriers to ongoing adoption of XCT in AM. The limitations of both AM and XCT regarding slow speeds and high costs, when compared to other manufacturing and measurement techniques, are also noted as general barriers to continued adoption of XCT and AM
Optimization of Hydrogen Supercritical Oxy-Combustion in Gas Turbines
This study investigates the combustion of hydrogen in supercritical gas turbines, emphasizing the optimization of combustor design through computational fluid dynamics (CFD) simulations. Key parameters analysed include the number of oxygen inlets, operating pressure, excess working fluid in oxygen inlets, power output, and the use of different working fluids: supercritical argon (sAr) and supercritical xenon (sXe). The results highlight how these parameters influence temperature distribution, flame stability, and overall combustion efficiency. Findings suggest that increasing the number of oxygen inlets can significantly affect temperature profiles, while higher operating pressures lead to shorter flames. The dilution of oxygen by argon reduces the peak temperatures, and the choice of working fluid impacts cooling efficiency and flame dynamics. This study provides valuable information on optimizing the design of supercritical combustion chambers for hydrogen combustion in novel supercritical gas turbine systems
Technology transfer model for Austrian higher education institutions
The aim of this paper is to present the findings of a PhD research (Heinzl 2007, Unpublished PhD Thesis) conducted on the Universities of Applied Sciences in Austria. Four of the models that emerge from this research are: Generic Technology Transfer Model (Sect. 5.1); Idiosyncrasies Model for the Austrian Universities of Applied Sciences (Sect. 5.2); Idiosyncrasies-Technology Transfer Effects Model (Sect. 5.3); Idiosyncrasies-Technology Transfer Cumulated Effects Model (Sect. 5.3). The primary and secondary research methods employed for this study are: literature survey, focus groups, participant observation, and interviews. The findings of the research contribute to a conceptual design of a technology transfer system which aims to enhance the higher education institutions' technology transfer performance. © 2012 Springer Science+Business Media, LLC
Competitive Benchmarking: An IS Research Approach to Address Wicked Problems with Big Data and Analytics
Wicked problems like sustainable energy and financial market stability are societal challenges that arise from complex socio-technical systems in which numerous social, economic, political, and technical factors interact. Understanding and mitigating them requires research methods that scale beyond the traditional areas of inquiry of Information Systems (IS) “individuals, organizations, and markets” and that deliver solutions in addition to insights. We describe an approach to address these challenges through Competitive Benchmarking (CB), a novel research method that helps interdisciplinary research communities to tackle complex challenges of societal scale by using different types of data from a variety of sources such as usage data from customers, production patterns from producers, public policy and regulatory constraints, etc. for a given instantiation. Further, the CB platform generates data that can be used to improve operational strategies and judge the effectiveness of regulatory regimes and policies. We describe our experience applying CB to the sustainable energy challenge in the Power Trading Agent Competition (Power TAC) in which more than a dozen research groups from around the world jointly devise, benchmark, and improve IS-based solutions
- …
