85 research outputs found

    Somatic cell count in bovine quarter milk samples culture positive for various Staphylococcus species

    Get PDF
    Background: Non-aureus staphylococci (NAS) are the most prevalent group of bacteria isolated in bovine mastitis milk in Finland and many other countries. They usually cause subclinical or mild clinical mastitis. The increase in milk somatic cell count (SCC) during NAS intramammary infection varies from slight to marked, reflecting the severity of infection in the quarter. Limited evidence has indicated that NAS species may have different impact on milk SCC. We used a large data set originating from a prevalence study, including isolates from quarter milk samples and the SCCs of the respective quarters, to study the effect of different NAS species on quarter milk SCC. Results: Staphylococcal species of a total of 1265 isolates, originally identified as NAS, were analysed with MALDI-TOF MS. The most prevalent NAS species were S. epidermidis, S. simulans, S. chromogenes and S. haemolyticus. Forty-two isolates appeared to be S. aureus. Geometric mean milk SCC of all quarter samples was 114,000 cells/mL and median 126,000 cells/mL. Staphylococcus species had a significant effect on the SCC of the quarter. The highest SCCs were caused by S. aureus, S. agnetis/S. hyicus (these two species cannot be distinguished with MALDI-TOF MS) and S. simulans. The mean SCCs of milk samples that were culture positive for these three species did not differ signifcantly from each other but were significantly higher than the mean SCCs of milk samples positive for any other species. The mean SCC of milk samples positive for S. chromogenes was signifcantly higher than those of milk samples positive for S. epidermidis or S. warneri. Conclusion: Our results confirm that different Staphylococcus species have different impacts on milk SCC, as shown in previous studies. S. aureus caused the highest SCC, as expected, but the SCCs caused by S. agnetis/S. hyicus and S. simulans did not differ significantly from that of S. aureus. Other Staphylococcus species may also cause high SCC but are often isolated also from quarters with SCC on the level of healthy quarters.Peer reviewe

    Nautojen sairaudet 2005

    Get PDF

    Bacteriological etiology and treatment of mastitis in Finnish dairy herds

    Get PDF
    Abstract Background The Finnish dairy herd recording system maintains production and health records of cows and herds. Veterinarians and farmers register veterinary treatments in the system. Milk samples for microbiological analysis are routinely taken from mastitic cows. The laboratory of the largest dairy company in Finland, Valio Ltd., analyzes most samples using real-time PCR. This study addressed pathogen-specific microbiological data and treatment and culling records, in combination with cow and herd characteristics, from the Finnish dairy herd recording system during 2010–2012. Results The data derived from 240,067 quarter milk samples from 93,529 dairy cows with mastitis; 238,235 cows from the same herds served as the control group. No target pathogen DNA was detected in 12% of the samples. In 49% of the positive samples, only one target species and in 19%, two species with one dominant species were present. The most common species in the samples with a single species only were coagulase-negative staphylococci (CNS) (43%), followed by Staphylococcus aureus (21%), Streptococcus uberis (9%), Streptococcus dysgalactiae (8%), Corynebacterium bovis (7%), and Escherichia coli (5%). On average, 36% of the study cows and 6% of the control cows had recorded mastitis treatments during lactation. The corresponding proportions were 16 and 6% at drying-off. For more than 75% of the treatments during lactation, diagnosis was acute clinical mastitis. In the milk samples from cows with a recorded mastitis treatment during lactation, CNS and S. aureus were most common, followed by streptococci. Altogether, 48% of the cows were culled during the study. Mastitis was reported as the most common reason to cull; 49% of study cows and 18% of control cows were culled because of mastitis. Culling was most likely if S. aureus was detected in the milk sample submitted during the culling year. Conclusions The PCR test has proven to be an applicable method also for large-scale use in bacterial diagnostics. In the present study, microbiological diagnosis was unequivocal in the great majority of samples where a single species or two species with one dominating were detected. Coagulase-negative staphylococci and S. aureus were the most common species. S. aureus was also the most common pathogen among the culled cows, which emphasizes the importance of preventive measures

    Innate immune response in experimentally induced bovine intramammary infection with Staphylococcus simulans and S. epidermidis

    Get PDF
    Coagulase-negative staphylococci (CNS) are in several countries the most common bacteria isolated in subclinical mastitis. To investigate the innate immune response of cows to infections with two common mastitis-causing CNS species, Staphylococcus epidermidis and Staphylococcus simulans, experimental intramammary infection was induced in eight cows using a crossover design. The milk somatic cell count (SCC), N-acetyl-β-D-glucosaminidase (NAGase) activity, milk amyloid A (MAA), serum amyloid A (SAA) and proinflammatory cytokines interleukin (IL)-1β, IL-8, and tumor necrosis factor α (TNF-α) were determined at several time points before and after challenge. All cows became infected and showed mild to moderate clinical signs of mastitis. The spontaneous elimination rate of the 16 infections was 31.3%, with no difference between species. Infections triggered a local cytokine response in the experimental udder quarters, but cytokines were not detected in the uninfected control quarters or in systemic circulation. The innate local immune response for S. simulans was slightly stronger, with significantly higher concentrations of IL-1β and IL-8. The IL-8 response could be divided into early, delayed, or combined types of response. The CNS species or persistency of infection was not associated with the type of IL-8 response. No significant differences were seen between spontaneously eliminated or persistent infections

    Species distribution and in vitro antimicrobial susceptibility of coagulase-negative staphylococci isolated from bovine mastitic milk

    Get PDF
    Background: Coagulase-negative staphylococci (CoNS) are the most common bovine mastitis causing bacteria in many countries. It is known that resistance for antimicrobials is in general more common in CoNS than in Staphylococcus aureus but little is known about the antimicrobial resistance of specific CoNS species. In this study, 400 CoNS isolates from bovine mastitic milk samples were identified to species level using ribotyping and MALDI-TOF MS, and their antimicrobial susceptibility was determined using a commercially available microdilution system. The results were interpreted according to the epidemiological cut-off values by the European Committee on Antimicrobial Susceptibility testing. Results: The most common CoNS species were S. simulans, S. epidermidis, S. chromogenes and S. haemolyticus. Penicillin resistance was the most common type of antimicrobial resistance. Staphylococcus epidermidis was the most resistant among the four major species. Almost one-third of our S. epidermidis isolates were resistant to >2 antimicrobials and close to 7 % were multidrug resistant. The majority of S. epidermidis isolates were resistant to benzylpenicillin. On the contrary, only few S. simulans isolates were penicillin-resistant. Phenotypic oxacillin resistance was found in all four main species, and 34 % of the isolates were oxacillin resistant. However, only 21 isolates (5 %) were positive for the mecA gene. Of these, 20 were S. epidermidis and one S. sciuri. mecC positive isolates were not found. Conclusion: Staphylococcus epidermidis differed from the three other major CoNS species as resistance to the tested antimicrobials was common, several isolates were multidrug resistant, and 19 % of the isolates carried the mecA gene encoding methicillin resistance.Peer reviewe

    Bovine milk microbiome : a more complex issue than expected

    Get PDF
    Abstract The aim of this study was to analyze bacterial profiles of bovine mastitic milk samples and samples from healthy quarters using Next Generation Sequencing of amplicons from 16S rRNA genes and to compare results with microbiological results by PCR assays of the same samples. A total of 49 samples were collected from one single dairy herd during the same day. The samples were divided in two sample sets, which were used in this study. The DNA extraction as well as the library preparation and sequencing of these two sets were performed separately, and results of the two datasets were then compared. The vast majority of genera detected appeared with low read numbers and/or in only a few samples. Results of PCR and microbiome analyses of samples infected with major pathogens Staphylococcus aureus or Streptococcus uberis were consistent as these genera also covered the majority of reads detected in the microbiome analysis. Analysis of alpha diversity revealed a much higher species richness in set 1 than in set 2. The dominating bacterial genera with the highest read numbers clearly differed between datasets, especially in PCR negative samples and samples positive for minor pathogens. In addition to this, linear discriminant analysis (LDA) was conducted between the two sets to identify significantly different genera/family level microbes. The genus Methylobacterium was much more common in set 2 compared to set 1, and genus Streptococcus more common in set 1. Our results indicate amplification of contaminating bacteria in excess in samples with no or minor amounts of pathogen DNA in dataset 2. There is a need for critical assessment of results of milk microbiome analyses

    Prevalence of subclinical mastitis in Finnish dairy cows : changes during recent decades and impact of cow and herd factors

    Get PDF
    Background: The dairy industry has undergone substantial structural changes as intensive farming has developed during recent decades. Mastitis continues to be the most common production disease of dairy cows. Nationwide surveys of mastitis prevalence are useful in monitoring udder health of dairy herds and to study the impact of structural changes on the dairy industry. This survey on bovine subclinical mastitis was the first based on cow composite milk somatic cell count (SCC) data from the Finnish national health monitoring and milk recording database. A cow with composite milk SCC = 200,000 cells/ml in at least one of the four test milkings during the year was considered to have subclinical mastitis and a cow with composite milk SCC = 200,000 cells/ml in three or in all four test milkings during the year to have chronic subclinical mastitis. The aim of the study was to determine the prevalence of subclinical mastitis and chronic subclinical mastitis in Finland in 1991, 2001 and 2010 and to investigate cow and herd factors associated with elevated SCC. Results: Prevalence of subclinical mastitis in Finland decreased over recent decades from 22.3% (1991) and 20.1% (2001) to 19.0% (2010). Prevalence of chronic subclinical mastitis was 20.4% in 1991, 15.5% in 2001 and 16.1% in 2010. The most significant cow and herd factors associated with subclinical mastitis or high milk SCC were increasing parity, Holstein breed, free- stalls with an automatic milking system and organic production. Milk SCC were highest from July to September. Main factors associated with chronic mastitis were increasing parity and Holstein breed. Conclusions: Prevalence of subclinical mastitis in Finland decreased over recent decades, the greatest change taking place during the first decade of the study. Prevalence of chronic subclinical mastitis significantly decreased from 1991. The most significant factors associated with both types of mastitis were increasing parity and Holstein breed, and for subclinical mastitis also free-stalls with automatic milking. National surveys on mastitis prevalence should be carried out at regular intervals to monitor udder health of dairy cows and to study the impact of the ongoing structural changes in the dairy industry to enable interventions related to udder health to be made when needed.Peer reviewe

    Detection of clinical mastitis with the help of a thermal camera

    Get PDF
    Increasing dairy farm size and increase in automation in livestock production require that new methods are used to monitor animal health. In this study, a thermal camera was tested for its capacity to detect clinical mastitis. Mastitis was experimentally induced in 6 cows with 10 mu g of Escherichia coli lipopolysaccharide (LPS). The LPS was infused into the left forequarter of each cow, and the right forequarters served as controls. Clinical examination for systemic and local signs and sampling for indicators of inflammation in milk were carried out before morning and evening milking throughout the 5-d experimental period and more frequently on the challenge day. Thermal images of experimental and control quarters were taken at each sampling time from lateral and medial angles. The first signs of clinical mastitis were noted in all cows 2 h postchallenge and included changes in general appearance of the cows and local clinical signs in the affected udder quarter. Rectal temperature, milk somatic cell count, and electrical conductivity were increased 4 h postchallenge and milk N-acetyl-beta-D-glucosaminidase activity 8 h postchallenge. The thermal camera was successful in detecting the 1 to 1.5 degrees C temperature change on udder skin associated with clinical mastitis in all cows because temperature of the udder skin of the experimental and control quarters increased in line with the rectal temperature. Yet, local signs on the udder were seen before the rise in udder skin and body temperature. The udder represents a sensitive site for detection of any febrile disease using a noninvasive method. A thermal camera mounted in a milking or feeding parlor could detect temperature changes associated with clinical mastitis or other diseases in a dairy herd.Increasing dairy farm size and increase in automation in livestock production require that new methods are used to monitor animal health. In this study, a thermal camera was tested for its capacity to detect clinical mastitis. Mastitis was experimentally induced in 6 cows with 10 mu g of Escherichia coli lipopolysaccharide (LPS). The LPS was infused into the left forequarter of each cow, and the right forequarters served as controls. Clinical examination for systemic and local signs and sampling for indicators of inflammation in milk were carried out before morning and evening milking throughout the 5-d experimental period and more frequently on the challenge day. Thermal images of experimental and control quarters were taken at each sampling time from lateral and medial angles. The first signs of clinical mastitis were noted in all cows 2 h postchallenge and included changes in general appearance of the cows and local clinical signs in the affected udder quarter. Rectal temperature, milk somatic cell count, and electrical conductivity were increased 4 h postchallenge and milk N-acetyl-beta-D-glucosaminidase activity 8 h postchallenge. The thermal camera was successful in detecting the 1 to 1.5 degrees C temperature change on udder skin associated with clinical mastitis in all cows because temperature of the udder skin of the experimental and control quarters increased in line with the rectal temperature. Yet, local signs on the udder were seen before the rise in udder skin and body temperature. The udder represents a sensitive site for detection of any febrile disease using a noninvasive method. A thermal camera mounted in a milking or feeding parlor could detect temperature changes associated with clinical mastitis or other diseases in a dairy herd.Increasing dairy farm size and increase in automation in livestock production require that new methods are used to monitor animal health. In this study, a thermal camera was tested for its capacity to detect clinical mastitis. Mastitis was experimentally induced in 6 cows with 10 mu g of Escherichia coli lipopolysaccharide (LPS). The LPS was infused into the left forequarter of each cow, and the right forequarters served as controls. Clinical examination for systemic and local signs and sampling for indicators of inflammation in milk were carried out before morning and evening milking throughout the 5-d experimental period and more frequently on the challenge day. Thermal images of experimental and control quarters were taken at each sampling time from lateral and medial angles. The first signs of clinical mastitis were noted in all cows 2 h postchallenge and included changes in general appearance of the cows and local clinical signs in the affected udder quarter. Rectal temperature, milk somatic cell count, and electrical conductivity were increased 4 h postchallenge and milk N-acetyl-beta-D-glucosaminidase activity 8 h postchallenge. The thermal camera was successful in detecting the 1 to 1.5 degrees C temperature change on udder skin associated with clinical mastitis in all cows because temperature of the udder skin of the experimental and control quarters increased in line with the rectal temperature. Yet, local signs on the udder were seen before the rise in udder skin and body temperature. The udder represents a sensitive site for detection of any febrile disease using a noninvasive method. A thermal camera mounted in a milking or feeding parlor could detect temperature changes associated with clinical mastitis or other diseases in a dairy herd.Peer reviewe

    Copy number alterations define outcome in Philadelphia chromosome-positive acute lymphoblastic leukemia

    Get PDF
    Funding Information: NGS library preparation, sequencing and sequence analysis were performed by the Institute for Molecular Medicine Finland (FIMM) Technology Center, University of Helsinki. We thank laboratory technicians Jay Klievink in Hematology Research Unit Helsinki (HRUH) and Minna Suvela in FIMM for technical support with the DNA extractions and laboratory coordinator Minna Tuominen in FIMM for technical support with multiplex ligation-dependent probe amplification. We are grateful to the members of the HRUH for discussions and technical help. We thank research nurses Anne Gesterberg, Jenni Raali and Susanna Helkkula for help with clinical data. We thank Dr Veli Kairisto in Tykslab, Dr Taru Kuittinen in Kuopio University Hospital and clinical laboratory geneticists Anne Juvonen and Tarja Salonen in HUSLAB for help with clinical samples. The samples of this project were provided by Finnish University Hospital clinical laboratories and the Finnish Hematology Registry and Clinical Biobank (FHRB) with appropriate ethics approval (Dnro 202/06.01.00/2013). We thank all the patients for their generous participation. The FHRB Biobank is supported by the Finnish Association of Hematology, the Finnish Red Cross Blood Service, Institute for Molecular Medicine Finland, and the participating hospitals in Finland. This study was supported by the Doctoral Program in Clinical Research at the University of Helsinki and personal grants (to HH) from Emil Aaltonen Foundation, Ida Montin Foundation, Blood Disease Research Foundation, Finnish Hematology Association, Finnish Medical Foundation, Biomedicum Helsinki Foundation, Paulo Foundation, (to SM) Finnish Cancer Organizations, Sigrid Juselius Foundation, Signe and Ane Gyllenberg Foundation, Relander Foundation, and state funding for university-level health research in Finland. The laboratory analytics costs of this study were funded by Incyte. Funding Information: TS (not related to this study) is a member of the advisory board of Celgene and AbbVie; is a member of the advisory board of and received lecture fees from Pfizer and Janssen-Cilag; received lecture fees from Bristol Myers Squibb; received congress fees from and is a member of the advisory board of Novartis; received congress fees from Amgen. MP (not-related to this study) is a member of the advisory board of Pfizer and AbbVie; received lecture and congress fees from Novartis. OB received consultancy fees from Novartis and Sanofi. SM (not related to this study) received research funding from Novartis, BMS, Janpix, and Pfizer. All other authors have no conflicts of interest to disclose. Funding Information: NGS library preparation, sequencing and sequence analysis were performed by the Institute for Molecular Medicine Finland (FIMM) Technology Center, University of Helsinki. We thank laboratory technicians Jay Klievink in Hematology Research Unit Helsinki (HRUH) and Minna Suvela in FIMM for technical support with the DNA extractions and laboratory coordinator Minna Tuominen in FIMM for technical support with multiplex ligation-dependent probe amplification. We are grateful to the members of the HRUH for discussions and technical help. We thank research nurses Anne Gesterberg, Jenni Raali and Susanna Helkkula for help with clinical data. We thank Dr Veli Kairisto in Tykslab, Dr Taru Kuittinen in Kuopio University Hospital and clinical laboratory geneticists Anne Juvonen and Tarja Salonen in HUSLAB for help with clinical samples. The samples of this project were provided by Finnish University Hospital clinical laboratories and the Finnish Hematology Registry and Clinical Biobank (FHRB) with appropriate ethics approval (Dnro 202/06.01.00/2013). We thank all the patients for their generous participation. The FHRB Biobank is supported by the Finnish Association of Hematology, the Finnish Red Cross Blood Service, Institute for Molecular Medicine Finland, and the participating hospitals in Finland.Non peer reviewe
    corecore