98 research outputs found

    Antioxidant Systems are Regulated by Nitric Oxide-Mediated Post-translational Modifications (NO-PTMs)

    Get PDF
    Nitric oxide (NO) is a biological messenger that orchestrates a plethora of plant functions, mainly through post-translational modifications (PTMs) such as S-nitrosylation or tyrosine nitration. In plants, hundreds of proteins have been identified as potential targets of these NO-PTMs under physiological and stress conditions indicating the relevance of NO in plant-signaling mechanisms. Among these NO protein targets, there are different antioxidant enzymes involved in the control of reactive oxygen species (ROS), such as H2O2, which is also a signal molecule. This highlights the close relationship between ROS/NO signaling pathways. The major plant antioxidant enzymes, including catalase, superoxide dismutases (SODs) peroxiredoxins (Prx) and all the enzymatic components of the ascorbate-glutathione (Asa-GSH) cycle, have been shown to be modulated to different degrees by NO-PTMs. This mini-review will update the recent knowledge concerning the interaction of NO with these antioxidant enzymes, with a special focus on the components of the Asa-GSH cycle and their physiological relevance.JB-M would like to thank the Ministry of Science and Innovation for funding the Ph.D. fellowship (F.P.U.). This study was supported by an ERDF grant co-financed by the Ministry of Economy and Competitiveness (project BIO2012-33904), Junta de AndalucĂ­a (P10-AGR-6038 and groups BIO286 and BIO192) and RECUPERA2020 in Spain.Peer reviewedPeer Reviewe

    Nitric Oxide Controls Constitutive Freezing Tolerance in Arabidopsis by Attenuating the Levels of Osmoprotectants, Stress-Related Hormones and Anthocyanins

    Full text link
    [EN] Plant tolerance to freezing temperatures is governed by endogenous constitutive components and environmental inducing factors. Nitric oxide (NO) is one of the endogenous components that participate in freezing tolerance regulation. A combined metabolomic and transcriptomic characterization of NO-deficient nia1,2noa1Âż2 mutant plants suggests that NO acts attenuating the production and accumulation of osmoprotective and regulatory metabolites, such as sugars and polyamines, stress-related hormones, such as ABA and jasmonates, and antioxidants, such as anthocyanins and flavonoids. Accordingly, NO-deficient plants are constitutively more freezing tolerant than wild type plants.This work was supported by grants BIO2011-27526 and BIO2014-56067-P from the Spanish Ministry of Economy and Competitiveness and FEDER funds. We thank support and comments from Janice Jones and Danny Alexander (Metabolon Inc., USA) on metabolomic analyses.Costa-Broseta, Á.; Perea-Resa, C.; Castillo LĂłpez Del Toro, MC.; RuĂ­z, MF.; Salinas, J.; Leon Ramos, J. (2018). Nitric Oxide Controls Constitutive Freezing Tolerance in Arabidopsis by Attenuating the Levels of Osmoprotectants, Stress-Related Hormones and Anthocyanins. Scientific Reports. 8. https://doi.org/10.1038/s41598-018-27668-8S8JanskĂĄ, A., MarsĂ­k, P., ZelenkovĂĄ, S. & OvesnĂĄ, J. Cold stress and acclimation - what is important for metabolic adjustment? Plant Biol (Stuttg) 12, 395–405 (2010).Eremina, M., Rozhon, W. & Poppenberger, B. Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73, 797–810 (2016).Winkel-Shirley, B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5, 218–223 (2002).Cuevas, J. C. et al. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148, 1094–105 (2008).Chen, M. & Thelen, J. J. Acyl-lipid desaturase 1 primes cold acclimation response in Arabidopsis. Physiol Plant 158, 11–22 (2016).Takahashi, D., Kawamura, Y. & Uemura, M. Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. J Exp Bot 67, 5203–5215 (2016).van Buer, J., Cvetkovic, J. & Baier, M. Cold regulation of plastid ascorbate peroxidases serves as a priming hub controlling ROS signaling in Arabidopsis thaliana. BMC Plant Biol 16(1), 163 (2016).Zhao, M. G., Chen, L., Zhang, L. L. & Zhang, W. H. Nitric reductase dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151, 755–767 (2009).Puyaubert, J. & Baudouin, E. New clues for a cold case: nitric oxide response to low temperature. Plant Cell & Environ 37, 2623–2630 (2014).Siddiqui, M. H., Al-Whaibi, M. H. & Basalah, M. O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248, 447–455 (2011).Arasimowicz-Jelonek, M. & Floryszak-Wieczorek, J. Nitric oxide: an effective weapon of the plant or the pathogen? Mol. Plant Pathol. 15, 406–416 (2014).Gupta, K. J., Fernie, A. R., Kaiser, W. M. & van Dongen, J. T. On the origins of nitric oxide. Trends Plant Sci. 16, 160–168 (2011).Mur, L. A. et al. Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5, pls052 (2013).Thomas, D. D. Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 5, 225–33 (2015).Correa-Aragunde, N., Foresi, N. & Lamattina, L. Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. J. Exp. Bot. 66, 2913–2921 (2015).GroÎČ, F., Durner, J. & Gaupels, F. Nitric oxide, antioxidants and prooxidants in plant defence responses. Front. Plant Sci. 4, 419 (2013).Astier, J. & Lindermayr, C. Nitric oxide-dependent posttranslational modification in plants: an update. Int. J. Mol. Sci. 13, 15193–15208 (2012).Hess, D. T. & Stamler, J. S. Regulation by S-nitrosylation of protein post-translational modification. J. Biol. Chem. 287, 4411–4418 (2012).Guerra, D. D. & Callis, J. Ubiquitin on the move: the ubiquitin modification system plays diverse roles in the regulation of endoplasmic reticulum- and plasma membrane-localized proteins. Plant Physiol. 160, 56–64 (2012).Cantrel, C. et al. Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol. 189, 415–427 (2011).Lozano-Juste, J. & LeĂłn, J. Enhanced abscisic acid-mediated responses innia1,2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol. 152, 891–903 (2010).Gibbs, D. J. et al. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell 53, 369–379 (2014).Lee, B. H., Henderson, D. A. & Zhu, J. K. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17, 3155–3175 (2005).Kilian, J. et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 50, 347–363 (2007).Hu, Y., Jiang, L., Wang, F. & Yu, D. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25, 2907–2924 (2013).Lee, H. G. & Seo, P. J. The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis. Plant J. 82, 962–977 (2015).Kasukabe, Y. et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant & Cell Physiol 45, 712–722 (2004).Korn, M., Peterek, S., Mock, H. P., Heyer, A. G. & Hincha, D. K. Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant Cell & Environ. 31, 813–827 (2008).Guy, C., Kaplan, F., Kopka, J., Selbig, J. & Hincha, D. K. Metabolomics of temperature stress. Physiol. Plant. 132, 220–235 (2008).Berger, S. et al. Enzymatic and non enzymatic lipid peroxidation in leaf development. Biochem. Biophys. Acta 1533, 266–276 (2001).Yoshida, Y., Umeno, A. & Shichiri, M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J Clin. Biochem. Nutr. 52, 9–16 (2013).CatalĂĄ, R. et al. The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26, 3326–3342 (2014).TĂ€htiharju, S. & Palva, T. Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J. 26, 461–470 (2001).Kawamura, Y. & Uemura, M. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J. 36, 141–154 (2003).Xin, Z. & Browse, J. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc. Natl. Acad. Sci. USA 95, 7799–7804 (1998).Nanjo, T. et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461, 205–210 (1999).Zuther, E., Schulz, E., Childs, L. H. & Hincha, D. K. Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant Cell & Environ. 35, 1860–1878 (2012).AlcĂĄzar, R., GarcĂ­a-MartĂ­nez, J. L., Cuevas, J. C., Tiburcio, A. F. & Altabella, T. Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA deficiency. Plant J. 43, 425–436 (2005).Alet, A. I. et al. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal. & Behav. 6, 278–286 (2011).NĂ€gele, T., Stutz, S., Hörmiller, I. I. & Heyer, A. G. Identification of a metabolic bottleneck for cold acclimation in Arabidopsis thaliana. Plant J. 72, 102–114 (2012).Krol, M. et al. Low-temperature stress and photoperiod affect an increased tolerance to photoinhibition in Pinus banksiana seedlings. Canadian Journal of Botany 73, 1119–1127 (1995).Harvaux, M. & Kloppstech, K. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213, 953–966 (2001).Schulz, E., Tohge, T., Zuther, E., Fernie, A. R. & Hincha, D. K. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci. Rep. 6, 34027 (2016).Llorente, F., Oliveros, J. C., MartĂ­nez-Zapater, J. M. & Salinas, J. A freezing-sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta 211, 648–655 (2000).Lozano-Juste, J., Colom-Moreno, R. & LeĂłn, J. In vivo protein tyrosine nitration in Arabidopsis thaliana. J. Exp. Bot. 62, 3501–3517.Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930 (2010).Begara-Morales, J. C. et al. Antioxidant Systems are Regulated by Nitric Oxide-Mediated Post-translational Modifications (NO-PTMs). Front. Plant Sci. 7, 152 (2016).Castillo, M. C. & LeĂłn, J. Expression of the beta-oxidation gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. J. Exp. Bot. 59, 2171–2179 (2008).Guo, F. Q., Okamoto, M. & Crawford, N. M. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302, 100–103 (2003).Solfanelli, C., Poggi, A., Loreti, E., Alpi, A. & Perata, P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 140, 637–646 (2006).Seo, M., Jikumaru, Y. & Kamiya, Y. Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Meth. Mol. Biol. 773, 99–111 (2011)

    Charles Sinsout (1889-1985), un notable radical ?

    No full text
    Le souvenir de « Monsieur le prĂ©sident Sinsout » demeure bien vivace en Bergeracois. Il fut un Ă©lu radical a priori classique avec plusieurs mandats, plusieurs fonctions exĂ©cutives dans la formation valoisienne, une belle longĂ©vitĂ© politique, de 1925 Ă  1971 sur trois RĂ©publiques. En symbiose avec les agriculteurs, il a collectionnĂ© Ă  leurs cĂŽtĂ©s les dĂ©fis, des dĂ©fis qui mĂ©ritent ce premier dĂ©cryptage. IntĂ©ressant sera aussi de situer dans « la mouvance radicale » cet Ă©lu plus atypique qu’il n..

    Un contre-exemple : la rĂ©sistance au dĂ©clin d’un fief radical, Georges et Alain Bonnet en Dordogne. Territoire et liens croisĂ©s de dĂ©pendance

    No full text
    Le fief de Georges Bonnet en Dordogne offre un bel exemple de rĂ©sistance au dĂ©clin du radicalisme, avec, Ă  la base, le tour de force de l’ancien ministre qui, proscrit, reconquiert le cƓur de son territoire d’influence puis retrouve une circonscription sous la IVe RĂ©publique. Qu’est-ce qui fait la spĂ©cificitĂ© de ce fief de G. Bonnet – ancien dĂ©putĂ© et ministre radical sous la IIIe RĂ©publique – Ă  Champagnac-de-BĂ©lair, BrantĂŽme et dans la circonscription de Nontron (Dordogne) lors de sa reconqu..

    Les réponses de l'Aquitaine politique (1956-1967)

    No full text
    L'Aquitaine est une vieille terre radicale et modérée, trÚs marquée par la tradition parlementaire héritée de la TroisiÚme République. Quelles réponses a-t-elle apporté à la nouvelle donne introduite par le général de Gaulle en 1958 et surtout en 1962 ? Ses cultures politiques ont-elles été modifiées en profondeur pendant cette décennie 1956-1967 ? En un mot, y a-t-il eu vraiment modernisation de la vie politique ? Ici, je prendrai comme cadre, la région administrative avec ses cinq départeme..

    Odette Pelletan-Bonnet (1893-1961), une Ă©pouse dans l’ombre de l’homme politique ?

    No full text
    ÉgĂ©rie de la IIIe RĂ©publique dans les annĂ©es 1930, Odette Pelletan (1893-1961), fille d’AndrĂ© Pelletan et de ThĂ©rĂšse Ordinaire, est quasiment oubliĂ©e, frappĂ©e du discrĂ©dit qui a affectĂ© son conjoint, Georges Bonnet (1889-1973), assimilĂ© Ă  l’ultrapacifisme. Les archives privĂ©es de la famille Bonnet, en particulier son journal intime, donnent un singulier relief Ă  cette femme engagĂ©e autour de la dĂ©fense de la politique de son mari lors de ses hautes fonctions, tant en France qu’à l’étranger. PĂ©trie du rĂ©publicanisme militant hĂ©ritĂ© de la maison Pelletan, attachĂ©e au parlementarisme, elle porte un regard sans concessions sur les coulisses de la scĂšne politicienne. Odette Bonnet nous a laissĂ© des portraits de ses contemporains oĂč ses dons d’observation font merveille. Avec son franc-parler, ses jugements acerbes, elle occupait une place Ă  part parmi l’élite au pouvoir. Sa libertĂ© de ton lui valut des dĂ©convenues, mais elle sut seconder Georges Bonnet avec panache, jouant sur les cordes mĂ©diatiques, aussi bien Ă  Washington, en 1937, pour une ambassade haute en couleurs, qu’au Quai d’Orsay, oĂč elle acquiert ses galons de grande dame en 1938. Cette famille se soude davantage durant l’Occupation et l’exil en Suisse (1944-1950). Toute Ă  la reconquĂȘte des positions perdues, sous la IVe RĂ©publique, Odette Bonnet est le pilier familial et partage globalement les opinions de Georges Bonnet.Puyaubert Jacques. Odette Pelletan-Bonnet (1893-1961), une Ă©pouse dans l’ombre de l’homme politique ?. In: Les oubliĂ©s de l’histoire. Actes du 134e CongrĂšs national des sociĂ©tĂ©s historiques et scientifiques, « CĂ©lĂšbres ou obscurs : hommes et femmes dans leurs territoires et leur histoire », Bordeaux, 2009. Paris : Editions du CTHS, 2012. pp. 81-91. (Actes des congrĂšs nationaux des sociĂ©tĂ©s historiques et scientifiques, 134-8

    Chapitre VII. Le drame d’un pacifiste (mars-septembre 1939)

    No full text
    Les six mois qui s’ouvrent sont ceux qui ont le plus comptĂ© dans la vie de Georges Bonnet, Ă  tel point, qu’inconsciemment, il s’efforcera de les gommer en focalisant, aprĂšs la guerre, sur la seule confĂ©rence de Munich. Six mois Ă  lutter contre des forces belliqueuses contraires. Cette croisade prend bientĂŽt les contours d’un drame permanent pour celui qui voit ses efforts sans cesse ruinĂ©s ou ses succĂšs rĂ©guliĂšrement contestĂ©s. En quelques semaines, le patient Ă©chafaudage construit par le min..

    Le centrisme chez les radicaux de l’entre-deux-guerres

    No full text
    DĂšs 1919, le radicalisme paraĂźt attirĂ© Ă  la fois par l’Ordre Ă©tabli et par le Mouvement chers Ă  François Goguel. Il a, ainsi, la possibilitĂ© de transcender le clivage droite/gauche pour promouvoir un projet consensuel. Champions de la dĂ©mocratie parlementaire, les radicaux vont chercher Ă  s’identifier, comme avant-guerre, Ă  la RĂ©publique. Notons que, suivant Serge Berstein, nous considĂ©rerons comme radicaux ceux qui se reconnaissent expressĂ©ment dans le Parti RĂ©publicain radical et radical-so..

    Chapitre II. L’épreuve du pouvoir (1924-1932)

    No full text
    Une fois Ă©lu, Georges Bonnet est contraint, dans un premier temps, d’abandonner ses fonctions d’auditeur de premiĂšre classe au Conseil d’État pour entrer au Parlement, le 11 mai 1924 ; il accĂšde trĂšs vite aux fonctions exĂ©cutives, ascension d’autant plus rapide qu’il se prĂ©sente comme le bras droit de l’homme qui lui a fait confiance, Paul PainlevĂ©. Dans sa Lettre Ă  un bourgeois de 1914, le jeune homme se proposait d’éliminer les « vieilles barbes », c’est chose faite. Le parcours politique d..

    Georges Bonnet (1889-1973), un bel exemple de longévité radicale en Dordogne

    No full text
    Puyaubert Jacques. Georges Bonnet (1889-1973), un bel exemple de longévité radicale en Dordogne. In: Le Midi dans la nation française. Actes du 126e CongrÚs national des sociétés historiques et scientifiques, « Terres et hommes du Sud », Toulouse, 2001. Paris : Editions du CTHS, 2002. pp. 121-139. (Actes du CongrÚs national des sociétés savantes, 126
    • 

    corecore