467 research outputs found

    Limits on decaying dark energy density models from the CMB temperature-redshift relation

    Full text link
    The nature of the dark energy is still a mystery and several models have been proposed to explain it. Here we consider a phenomenological model for dark energy decay into photons and particles as proposed by Lima (J. Lima, Phys. Rev. D 54, 2571 (1996)). He studied the thermodynamic aspects of decaying dark energy models in particular in the case of a continuous photon creation and/or disruption. Following his approach, we derive a temperature redshift relation for the CMB which depends on the effective equation of state weffw_{eff} and on the "adiabatic index" γ\gamma. Comparing our relation with the data on the CMB temperature as a function of the redshift obtained from Sunyaev-Zel'dovich observations and at higher redshift from quasar absorption line spectra, we find weff=0.97±0.034w_{eff}=-0.97 \pm 0.034, adopting for the adiabatic index γ=4/3\gamma=4/3, in good agreement with current estimates and still compatible with weff=1w_{eff}=-1, implying that the dark energy content being constant in time.Comment: 8 pages, 1 figur

    The distribution of two-dimensional eccentricity of Sunyaev-Zeldovich Effect and X-ray surface brightness profiles

    Full text link
    With the triaxial density profile of dark matter halos and the corresponding equilibrium gas distribution, we derive two-dimensional Sunyaev-Zeldovich (SZ) effect and X-ray surface brightness profiles for clusters of galaxies. It is found that the contour map of these observables can be well approximated by a series of concentric ellipses with scale-dependent eccentricities. The statistical distribution of their eccentricities (or equivalently axial ratios) is analyzed by taking into account the orientation of clusters with respect to the line of sight and the distribution of the axial ratios and the concentration parameters of dark matter halos. For clusters of mass 1013h1M10^{13}h^{-1}{M}_{\odot} at redshift z=0z=0, the axial ratio is peaked at η0.9\eta \sim 0.9 for both SZ and X-ray profiles. For larger clusters, the deviation from circular distributions is more apparent, with η\eta peaked at η0.85\eta \sim 0.85 for M=1015h1MM=10^{15}h^{-1}{M}_{\odot}. To be more close to observations, we further study the axial-ratio distribution for mass-limited cluster samples with the number distribution of clusters at different redshifts described by a modified Press-Schechter model. For a mass limit of value Mlim=1014h1MM_{lim}=10^{14}h^{-1}{M}_{\odot}, the average axial ratio is 0.84 \sim 0.84 with a tail extended to η0.6\eta \sim 0.6. With fast advance of high quality imaging observations of both SZ effect and X-ray emissions, our analyses provide a useful way to probe cluster halo profiles and therefore to test theoretical halo-formation models.Comment: 28 pages, 6 figures. Accepted for publication in the Astrophysical Journa

    Primordial magnetic field and spectral distortion of cosmic background radiation

    Get PDF
    The role played by a primordial magnetic field during the pre-recombination epoch is analysed through the cyclotron radiation (due to the free electrons) it might produce in the primordial plasma. We discuss the constraint implied by the measurement or lack thereof COBE on this primordial field.Comment: to appear in International Journal of Mod. Phy

    Non-equilibrium h-2 formation in the early universe: energy exchanges, rate coefficients, and spectral distortions

    Get PDF
    Energy exchange processes play a crucial role in the early universe, affecting the thermal balance and the dynamical evolution of the primordial gas. In the present work we focus on the consequences of a non-thermal distribution of the level populations of H2: first, we determine the excitation temperatures of vibrational transitions and the non-equilibrium heat transfer; second, we compare the modifications to chemical reaction rate coefficients with respect to the values obtained assuming local thermodynamic equilibrium; and third, we compute the spectral distortions to the cosmic background radiation generated by the formation of H2 in vibrationally excited levels. We conclude that non-equilibrium processes cannot be ignored in cosmological simulations of the evolution of baryons, although their observational signatures remain below current limits of detection. New fits to the equilibrium and non-equilibrium heat transfer functions are provided

    The First Stars

    Full text link
    We review recent theoretical results on the formation of the first stars in the universe, and emphasize related open questions. In particular, we discuss the initial conditions for Population III star formation, as given by variants of the cold dark matter cosmology. Numerical simulations have investigated the collapse and the fragmentation of metal-free gas, showing that the first stars were predominantly very massive. The exact determination of the stellar masses, and the precise form of the primordial initial mass function, is still hampered by our limited understanding of the accretion physics and the protostellar feedback effects. We address the importance of heavy elements in bringing about the transition from an early star formation mode dominated by massive stars, to the familiar mode dominated by low mass stars, at later times. We show how complementary observations, both at high redshifts and in our local cosmic neighborhood, can be utilized to probe the first epoch of star formation.Comment: 38 pages, 10 figures, draft version for 2004 Annual Reviews of Astronomy and Astrophysics, high-resolution version available at http://cfa-www.harvard.edu/~vbromm

    The first spectral line surveys searching for signals from the Dark Ages

    Get PDF
    Our aim is to observationally investigate the cosmic Dark Ages in order to constrain star and structure formation models, as well as the chemical evolution in the early Universe. Spectral lines from atoms and molecules in primordial perturbations at high redshifts can give information about the conditions in the early universe before and during the formation of the first stars in addition to the epoch of reionisation. The lines may arise from moving primordial perturbations before the formation of the first stars (resonant scattering lines), or could be thermal absorption or emission lines at lower redshifts. The difficulties in these searches are that the source redshift and evolutionary state, as well as molecular species and transition are unknown, which implies that an observed line can fall within a wide range of frequencies. The lines are also expected to be very weak. Observations from space have the advantages of stability and the lack of atmospheric features which is important in such observations. We have therefore, as a first step in our searches, used the Odin satellite to perform two sets of spectral line surveys towards several positions. The first survey covered the band 547-578 GHz towards two positions, and the second one covered the bands 542.0-547.5 GHz and 486.5-492.0 GHz towards six positions selected to test different sizes of the primordial clouds. Two deep searches centred at 543.250 and 543.100 GHz with 1 GHz bandwidth were also performed towards one position. The two lowest rotational transitions of H2 will be redshifted to these frequencies from z~20-30, which is the predicted epoch of the first star formation. No lines are detected at an rms level of 14-90 and 5-35 mK for the two surveys, respectively, and 2-7 mK in the deep searches with a channel spacing of 1-16 MHz. The broad bandwidth covered allows a wide range of redshifts to be explored for a number of atomic and molecular species and transitions. From the theoretical side, our sensitivity analysis show that the largest possible amplitudes of the resonant lines are about 1 mK at frequencies <200 GHz, and a few micro K around 500-600 GHz, assuming optically thick lines and no beam-dilution. However, if existing, thermal absorption lines have the potential to be orders of magnitude stronger than the resonant lines. We make a simple estimation of the sizes and masses of the primordial perturbations at their turn-around epochs, which previously has been identified as the most favourable epoch for a detection. This work may be considered as an important pilot study for our forthcoming observations with the Herschel Space Observatory.Comment: 15 pages, 9 figures, 3 on-line pages. Accepted for publication in Astronomy & Astrophysics 8 March 2010

    The functional properties of a truncated form of endothelial cell protein C receptor generated by alternative splicing

    Get PDF
    BACKGROUND: A soluble form of endothelial cell protein C receptor (sEPCR) is generated by shedding of the cellular form. sEPCR binds to protein C and factor VIIa and inhibits both the activation of protein C and the activity of activated protein C and factor VIIa. High sEPCR levels may increase the risk of thrombosis. We wanted to explore the possibility of detecting soluble endothelial cell protein C receptor forms generated by alternative splicing. DESIGN AND METHODS: Reverse transcriptase polymerase chain reaction was used to look for new forms of endothelial cell protein C receptor. A yeast expression system was used to generate sufficient amounts of the distinct sEPCR forms. Surface plasmon resonance experiments, chromogenic assays, clotting assays and immunoassays were subsequently performed to characterize a new form of sEPCR that was found. RESULTS: We demonstrated, by reverse transcriptase polymerase chain reaction and sequencing, the existence of a new, soluble form of endothelial cell protein C receptor generated by alternative splicing, in which the transmembrane region is replaced by a 56-residue tail (tEPCR). Its cDNA was present in human umbilical vein endothelial cells and in most tissues as well as in lung cancer cells. tEPCR was not located in the membrane of transfected cells. We demonstrated that tEPCR binds to protein C and factor VIIa. tEPCR blocked the generation of activated protein C and inhibited the activity of both activated protein C and factor VIIa. tEPCR was detected, by immunoassays, in the supernatant of lung cancer cells and human umbilical vein endothelial cells. CONCLUSIONS: A truncated form of alternatively spliced endothelial cell protein C receptor was detected in the endothelium and cancer cells. tEPCR behaves as sEPCR generated by shedding of the cellular endothelial cell protein C receptor

    Simulation of primordial object formation

    Full text link
    We have included the chemical rate network responsible for the formation of molecular Hydrogen in the N-body hydrodynamic code, Hydra, in order to study the formation of the first cosmological at redshifts between 10 and 50. We have tested our implementation of the chemical and cooling processes by comparing N-body top hat simulations with theoretical predictions from a semi-analytic model and found them to be in good agreement. We find that post-virialization properties are insensitive to the initial abundance of molecular hydrogen. Our main objective was to determine the minimum mass (MSG(z)M_{SG}(z)) of perturbations that could become self gravitating (a prerequisite for star formation), and the redshift at which this occurred. We have developed a robust indicator for detecting the presence of a self-gravitating cloud in our simulations and find that we can do so with a baryonic particle mass-resolution of 40 solar masses. We have performed cosmological simulations of primordial objects and find that the object's mass and redshift at which they become self gravitating agree well with the MSG(z)M_{SG}(z) results from the top hat simulations. Once a critical molecular hydrogen fractional abundance of about 0.0005 has formed in an object, the cooling time drops below the dynamical time at the centre of the cloud and the gas free falls in the dark matter potential wells, becoming self gravitating a dynamical time later.Comment: 45 pages, 17 figures, submitted to Ap
    corecore