26 research outputs found

    Frizzled-8 integrates Wnt-11 and transforming growth factor-β signaling in prostate cancer

    Get PDF
    Wnt-11 promotes cancer cell migration and invasion independently of β-catenin but the receptors involved remain unknown. Here, we provide evidence that FZD8 is a major Wnt-11 receptor in prostate cancer that integrates Wnt-11 and TGF-β signals to promote EMT. FZD8 mRNA is upregulated in multiple prostate cancer datasets and in metastatic cancer cell lines in vitro and in vivo. Analysis of patient samples reveals increased levels of FZD8 in cancer, correlating with Wnt-11. FZD8 co-localizes and co-immunoprecipitates with Wnt-11 and potentiates Wnt-11 activation of ATF2-dependent transcription. FZD8 silencing reduces prostate cancer cell migration, invasion, three-dimensional (3D) organotypic cell growth, expression of EMT-related genes, and TGF-β/Smad-dependent signaling. Mechanistically, FZD8 forms a TGF-β-regulated complex with TGF-β receptors that is mediated by the extracellular domains of FZD8 and TGFBR1. Targeting FZD8 may therefore inhibit aberrant activation of both Wnt and TGF-β signals in prostate cancer

    A subpopulation of Talin 1 resides in the nucleus and regulates gene expression

    Get PDF
    Talin 1 (TLN1) is best known for its role at focal adhesions, where it activates β-integrin receptors and transmits mechanical stimuli to the actin cytoskeleton. Interestingly, the localization of TLN1 is not restricted to the focal adhesions, but its function in other cellular compartments remains poorly understood. By utilizing both biochemical and confocal microscopy analyses, we show that TLN1 localizes to the nucleus and that it strongly interacts with the chromatin. Importantly, depletion of endogenous TLN1 results in extensive changes in the gene expression profile of human breast epithelial cells. To determine the impact of nuclear TLN1 on gene regulation, we expressed a TLN1 fusion protein containing a nuclear localization signal. Our results reve aled that nuclear TLN1 regulates a specific subset of the TLN1-dependent genes. Taken together, we show that apart from localizing at the plasma membrane and cytoplasm, TLN1 also resides in the nucleus where it functions in the regulation of gene expression

    Frizzled-8 integrates Wnt-11 and transforming growth factor-beta signaling in prostate cancer

    Get PDF
    Wnt-11 promotes cancer cell migration and invasion independently of beta-catenin but the receptors involved remain unknown. Here, we provide evidence that FZD(8) is a major Wnt-11 receptor in prostate cancer that integrates Wnt-11 and TGF-beta signals to promote EMT. FZD(8) mRNA is upregulated in multiple prostate cancer datasets and in metastatic cancer cell lines in vitro and in vivo. Analysis of patient samples reveals increased levels of FZD(8) in cancer, correlating with Wnt-11. FZD(8) co-localizes and co-immunoprecipitates with Wnt-11 and potentiates Wnt-11 activation of ATF2-dependent transcription. FZD(8) silencing reduces prostate cancer cell migration, invasion, three-dimensional (3D) organotypic cell growth, expression of EMT-related genes, and TGF-beta/Smad-dependent signaling. Mechanistically, FZD(8) forms a TGF-beta-regulated complex with TGF-beta receptors that is mediated by the extracellular domains of FZD(8) and TGFBR1. Targeting FZD(8) may therefore inhibit aberrant activation of both Wnt and TGF-beta signals in prostate cancer

    Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO

    Get PDF
    Intercellular transport of viruses through cytoplasmic connections, termed plasmodesmata (PD), is essential for systemic infection in plants by viruses. Previous genetic and ultrastructural data revealed that the potyvirus cyclindrical inclusion (CI) protein is directly involved in cell-to-cell movement, likely through the formation of conical structures anchored to and extended through PD. In this study, we demonstrate that plasmodesmatal localization of CI in N. benthamiana leaf cells is modulated by the recently discovered potyviral protein, P3N-PIPO, in a CI:P3N-PIPO ratio-dependent manner. We show that P3N-PIPO is a PD-located protein that physically interacts with CI in planta. The early secretory pathway, rather than the actomyosin motility system, is required for the delivery of P3N-PIPO and CI to PD. Moreover, CI mutations that disrupt virus cell-to-cell movement compromise PD-localization capacity. These data suggest that the CI and P3N-PIPO complex coordinates the formation of PD-associated structures that facilitate the intercellular movement of potyviruses in infected plants

    Protein Phosphatase 2A Mediates Dormancy of Glioblastoma Multiforme-Derived Tumor Stem-Like Cells during Hypoxia

    Get PDF
    The hypoxic microenvironment of glioblastoma multiforme (GBM) is thought to increase resistance to cancer therapies. Recent evidence suggests that hypoxia induces protein phosphatase 2A (PP2A), a regulator of cell cycle and cell death. The effects of PP2A on GBM tumor cell proliferation and survival during hypoxic conditions have not been studied.Expression of PP2A subunits and HIF-α proteins was measured in 65 high-grade astrocytoma and 18 non-neoplastic surgical brain specimens by western blotting. PP2A activity was measured by an immunoprecipitation assay. For in vitro experiments, GBM-derived tumor stem cell-like cells (TSCs) were exposed to severe hypoxia produced by either CoCl₂ or 1% O₂. PP2A activity was inhibited either by okadaic acid or by shRNA depletion of the PP2A C subunit. Effects of PP2A activity on cell cycle progression and cell survival during hypoxic conditions were assessed using flow cytometry.In our patient cohort, PP2A activity was positively correlated with HIF-1∝ protein expression (P = 0.002). Patients with PP2A activity levels above 160 pMP had significantly worse survival compared to patients with levels below this threshold (P = 0.002). PP2A activity was an independent predictor of survival on multivariable analysis (P = 0.009). In our in vitro experiments, we confirmed that severe hypoxia induces PP2A activity in TSCs 6 hours after onset of exposure. PP2A activity mediated G1/S phase growth inhibition and reduced cellular ATP consumption in hypoxic TSCs. Conversely, inhibition of PP2A activity led to increased cell proliferation, exhaustion of intracellular ATP, and accelerated P53-independent cell death of hypoxic TSCs.Our results suggest that PP2A activity predicts poor survival in GBM. PP2A appears to reduce the metabolic demand of hypoxic TSCs and enhances tumor cell survival. Modulation of PP2A may be a potential target for cancer therapy

    GaSbBi alloys and heterostructures: fabrication and properties

    Get PDF
    International audienceDilute bismuth (Bi) III-V alloys have recently attracted great attention, due to their properties of band-gap reduction and spin-orbit splitting. The incorporation of Bi into antimonide based III-V semiconductors is very attractive for the development of new optoelectronic devices working in the mid-infrared range (2-5 Âľm). However, due to its large size, Bi does not readily incorporate into III-V alloys and the epitaxy of III-V dilute bismides is thus very challenging. This book chapter presents the most recent developments in the epitaxy and characterization of GaSbBi alloys and heterostructures
    corecore