753 research outputs found

    Role of heat and mechanical treatments in the fabrication of superconducting Ba0.6K0.4Fe2As2 ex-situ Powder-In-Tube tapes

    Full text link
    Among the recently discovered Fe-based superconducting compounds, the (K,Ba)Fe2As2 phase is attracting large interest within the scientific community interested in conductor developments. In fact, after some years of development, critical current densities Jc of about 105 A/cm2 at fields up to more than 10 T have been obtained in powder in tube (PIT) processed wires and tapes. Here we explore the crucial points in the wire/tape fabrication by means of the ex-situ PIT method. We focus on scaling up processes which are crucial for the industrial fabrication. We analyzed the effects on the microstructure of the different heat and mechanical treatments. By an extensive microstructural analysis correlated with the transport properties we addressed the issues concerning the phase purity, the internal porosity and crack formation in the superconducting core region. Our best conductors with a filling factor of about 30 heat treated at 800 C exhibited Tc = 38 K the highest value measured in such kind of superconducting tape. The microstructure analysis shows clean and well connected grain boundaries but rather poor density: The measured Jc of about 3 x 10^4 A/cm2 in self-field is suppressed by less than a factor 7 at 7 T. Such not yet optimized Jc values can be accounted for by the reduced density while the moderate in-field suppression and a rather high n-factor confirm the high homogeneity and uniformity of these tapes

    Role of Dirac cones in magnetotransport properties of REFeAsO (RE=rare earth) oxypnictides

    Full text link
    In this work we study the effect of the rare earth element in iron oxypnictides of composition REFeAsO (RE=rare earth). On one hand we carry out Density Functional Theory calculations of the band structure, which evidence the multiband character of these compounds and the presence of Dirac cones along the Y-{\Gamma} and Z-R directions of the reciprocal space. On the other hand, we explore transport behavior by means of resistivity, Hall resistance and magnetoresistance measurements, which confirm the dominant role of Dirac cones. By combining our theoretical and experimental approaches, we extract information on effective masses, scattering rates and Fermi velocities for different rare earth elements.Comment: 13 pages, 5 figures accepted for publication on European Journal of Physics

    Coupling between 4f and itinerant electrons in SmFeAsO1-xFx (0.15 < x < 0.2) superconductors: an NMR study

    Full text link
    19^{19}F NMR measurements in SmFeAsO1x_{1-x}Fx_x, for 0.15x0.20.15\leq x\leq 0.2, are presented. The nuclear spin-lattice relaxation rate 1/T11/T_1 increases upon cooling with a trend analogous to the one already observed in CeCu5.2_{5.2}Au0.8_{0.8}, a quasi two-dimensional heavy-fermion intermetallic compound with an antiferromagnetic ground-state. In particular, the behaviour of the relaxation rate either in SmFeAsO1x_{1-x}Fx_x or in CeCu5.2_{5.2}Au0.8_{0.8} can be described in the framework of the self-consistent renormalization theory for weakly itinerant electron systems. Remarkably, no effect of the superconducting transition on 19^{19}F 1/T11/T_1 is detected, a phenomenon which can hardly be explained within a single band model.Comment: 4 figure

    Influence of carbon substitution on the heat transport in single crystalline MgB2

    Full text link
    We report data on the thermal conductivity \kappa(T,H) in the basal plane of hexagonal single-crystalline and superconducting Mg(B_{1-x}C_x)_2 (x= 0.03, 0.06) at temperatures between 0.5 and 50 K, and in external magnetic fields H between 0 and 50 kOe. The substitution of carbon for boron leads to a considerable reduction of the electronic heat transport, while the phonon thermal conductivity seems to be much less sensitive to impurities. The introduction of carbon enhances mostly the intraband scattering in the \sigma-band. In contrast to the previously observed anomalous behavior of pure MgB2_2, the Wiedemann-Franz law is valid for Mg(B_0.94 C_0.06)_2 at low temperatures.Comment: 4 pages, 4 figures. Final version to appear in Phys. Rev.

    Numerical tests of the lookup table method in solving richards' equation for infiltration and drainage in heterogeneous soils

    Get PDF
    The lookup table option, as an alternative to analytical calculation for evaluating the nonlinear heterogeneous soil characteristics, is introduced and compared for both the Picard and Newton iterative schemes in the numerical solution of Richards\u2019 equation. The lookup table method can be a cost-effective alternative to analytical evaluation in the case of heterogeneous soils, but it has not been examined in detail in the hydrological modeling literature. Three layered soil test problems are considered, and the robustness and accuracy of the lookup table approach are assessed for uniform and non-uniform distributions of lookup points in the soil moisture retention curves. Results from the three one-dimensional test simulations show that the uniform distributed option gives improved convergence and robustness for the drainage problem compared to the non-uniform strategy. On the other hand, the non-uniform technique can be chosen for test problems involving flow into initially dry layered soils

    Critical Field of MGB2 : Crossover from Clean to Dirty Regimes

    Full text link
    We have studied the upper critical field, Bc2, in poly-crystalline MgB2 samples in which disorder was varied in a controlled way to carry selectively p and s bands from clean to dirty limit. We have found that the clean regime survives when p bands are dirty and s bands are midway between clean and dirty. In this framework we can explain the anomalous behaviour of Al doped samples, in which Bc2 decreases as doping increases.Comment: 11 pages, 2 figure

    Crossover between magnetism and superconductivity in low H-doped LaFeAsO

    Full text link
    By a systematic study of the hydrogen-doped LaFeAsO system by means of dc resistivity, dc magnetometry, and muon-spin spectroscopy we addressed the question of universality of the phase diagram of rare-earth-1111 pnictides. In many respects, the behaviour of LaFeAsO_(1-x)H_(x) resembles that of its widely studied F-doped counterpart, with H^- realizing a similar (or better) electron-doping in the LaO planes. In a x = 0.01 sample we found a long-range SDW order with T_n = 119 K, while at x = 0.05 the SDW establishes only at 38 K and, below T_c = 10 K, it coexists at a nanoscopic scale with bulk superconductivity. Unlike the abrupt M-SC transition found in the parent La-1111 compound, the presence a crossover region makes the H-doped system qualitatively similar to other Sm-, Ce-, or Nd-1111 families.Comment: to appear in Journal of Physics: Condensed Matte

    Superconducting phase fluctuations in SmFeAsO0.8_{0.8}F0.2_{0.2} from diamagnetism at low magnetic field above TcT_{c}

    Full text link
    Superconducting fluctuations (SF) in SmFeAsO0.8_{0.8}F0.2_{0.2} (characterized by superconducting transition temperature Tc52.3T_{c} \simeq 52.3 K) are investigated by means of isothermal high-resolution dc magnetization measurements. The diamagnetic response to magnetic fields up to 1 T above TcT_{c} is similar to what previously reported for underdoped cuprate superconductors and it can be justified in terms of metastable superconducting islands at non-zero order parameter lacking of long-range coherence because of strong phase fluctuations. In the high-field regime (H1.5H \gtrsim 1.5 T) scaling arguments predicted on the basis of the Ginzburg-Landau theory of conventional SF are found to be applicable, at variance with what observed in the low-field regime. This fact enlightens that two different phenomena are simultaneously present in the fluctuating diamagnetism, namely the phase SF of novel character and the conventional SF. High magnetic fields (1.5 T HHc2\lesssim H \ll H_{c2}) are found to suppress the former while leaving unaltered the latter one.Comment: 7 pages, 5 figure

    Slow magnetic fluctuations and superconductivity in fluorine-doped NdFeAsO

    Get PDF
    Among the widely studied superconducting iron-pnictide compounds belonging to the Ln1111 family (with Ln a lanthanide), a systematic investigation of the crossover region between the superconducting and the antiferromagnetic phase for the Ln = Nd case has been missing. We fill this gap by focusing on the intermediate doping regime of NdFeAsO(1-x)F(x) by means of dc-magnetometry and muon-spin spectroscopy measurements. The long-range order we detect at low fluorine doping is replaced by short-range magnetic interactions at x = 0.08, where also superconductivity appears. In this case, longitudinal-field muon-spin spectroscopy experiments show clear evidence of slow magnetic fluctuations that disappear at low temperatures. This fluctuating component is ascribed to the glassy-like character of the magnetically ordered phase of NdFeAsO at intermediate fluorine doping

    Modification of intergrain connectivity, upper critical field anisotropy, and critical current density in ion irradiated MgB2 films

    Full text link
    We study the effect of 100 MeV Silicon and 200 MeV Gold ion irradiation on the inter and intra grain properties of superconducting thin films of Magnesium Diboride. Substantial decrease in inter-grain connectivity is observed, depending on irradiation dose and type of ions used. We establish that modification of sigma band scattering mechanism, and consequently the upper critical field and anisotropy, depends on the size and directional properties of the extrinsic defects. Post heavy ion irradiation, the upper critical field shows enhancement at a defect density that is five orders of magnitude less compared to neutron irradiation. The critical current density however is best improved through light ion irradiation.Comment: 18 pages, 4 figures, submitte
    corecore