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Abstract: The lookup table option, as an alternative to analytical calculation for evaluating the
nonlinear heterogeneous soil characteristics, is introduced and compared for both the Picard and
Newton iterative schemes in the numerical solution of Richards’ equation. The lookup table method
can be a cost-effective alternative to analytical evaluation in the case of heterogeneous soils, but
it has not been examined in detail in the hydrological modeling literature. Three layered soil test
problems are considered, and the robustness and accuracy of the lookup table approach are assessed
for uniform and non-uniform distributions of lookup points in the soil moisture retention curves.
Results from the three one-dimensional test simulations show that the uniform distributed option
gives improved convergence and robustness for the drainage problem compared to the non-uniform
strategy. On the other hand, the non-uniform technique can be chosen for test problems involving
flow into initially dry layered soils.

Keywords: Richards’ equation; subsurface hydrology; heterogeneous soils; infiltration; drainage;
numerical modeling

1. Introduction

Richards’ equation is a standard, commonly-used approach for describing flow in
partially-saturated porous media. The highly nonlinear nature of Richards’ equation, due to the
dependence of the hydraulic conductivity and diffusivity on the moisture content, in combination with
the non-trivial forcing conditions that are often encountered in engineering practice, makes Richards’
equation practically impossible to solve using analytical approaches except for a few special cases [1–3].
One of the numerous varieties of Richards’ equation is based on the pressure head (ψ) formulation,
which is the most commonly-used because it has the advantage of being applicable to both saturated
and unsaturated conditions and accommodating heterogeneous soils. In this approach, mass balance
is guaranteed by evaluating the moisture content change in a time step directly from the change in the
water pressure head [4]. In modeling unsaturated flow problems involving sharp wetting fronts, it
has been shown to offer excellent mass balance [5]. This technique is simple to employ in head-based
codes, requiring only an additional source term. However, this approach may encounter difficulties
in stability and convergence for a sharp wetting front [6–9]. Other methods such as the switching
algorithm are also proposed for better mass balance in simulating transitions between saturated and
unsaturated conditions [10,11], and the predictor-corrector method [10,12] can also be used to simulate
variably-saturated flow problems. A computationally-economic convergence approach based on using
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the pressure head as the primary variable has been proposed [13]. The pressure head form of Richards’
equation with the small change of ψ throughout a time step is able to attain good mass balance.

Soil water characteristic functions, which are required to solve Richards’ equation, are difficult
to measure adequately for soils with heterogeneous pore systems. Capturing the moisture content
profile across boundaries between materials with different hydraulic properties implies simulation
of the flow problem in heterogeneous media. This has proven to be a challenging task for numerical
modellers. Several numerical algorithms have been proposed to handle the discontinuity of fluid
content in layered soils [14–16]. Severe difficulties are encountered when the analytical expression
for the derivative of moisture content is used in the numerical simulation of fluid flow problem [17].
This is due to the shape of the soil water capacity function and the relative hydraulic conductivity
near saturation [9]. As a result, numerical accuracy can be affected significantly, as can the stability
and rate of convergence of the numerical scheme. Therefore, to circumvent such difficulties, a proper
choice of the estimation method of soil characteristic functions for heterogeneous porous media is
required. In this study, we adopted the lookup table technique, which is an alternative to the analytical
calculation of moisture curves.

In the numerical procedures for the solution of flow problems in variably-saturated porous media,
much effort has been devoted to overcoming mass conservation errors, numerical diffusion and other
inaccuracies that can be generated. The numerical solution of Richards’ equation is very challenging
due to the nonlinear dependency of the moisture content on the pressure head, and it requires
sophisticated numerical techniques to overcome convergence difficulties and poor computational
efficiency [17–19]. For the numerical solution of Richards’ equation, it is convenient to decouple the
issues of temporal and spatial accuracy. A variety of numerical models have been proposed on the basis
of the finite difference, finite element and finite volume methods to simulate saturated-unsaturated
flow [4,8,11,20–23]. In addition, most variably-saturated flow simulators currently in use are based
on fixed spatial grids and either fixed time steps or an empirically-based adaptive time stepping
method [4,24]. The numerical stability of the finite element models is improved by mass lumping since
previous findings indicate that consistent mass formulation can cause numerical oscillations [4,25,26].
The importance of proper treatment of the time derivative for reliable numerical simulations has also
been shown [4,27]. Typically-used time stepping schemes are the backward Euler and Crank–Nicolson
schemes, and it has been demonstrated that the second order schemes are generally more effective
than first-order schemes [28]. Other time stepping schemes used for Richards’ equation include the
three-level Lees’ and implicit factored schemes [28].

In linearization schemes, the Picard and Newton iterative methods represent the most common
approaches to solve numerically the nonlinear Richards’ equation, with the simpler Picard technique
being the more popular of the two [14,29–35]. It has been shown that the iterative Newton scheme is
quadratically convergent, while Picard converges linearly [28]. Moreover, the implementation of the
Picard scheme is easier, computationally inexpensive and preserves symmetry of the discrete system
of equations, whereas the Newton scheme generates a nonsymmetric system matrix. This factor is
important in assessing the relative efficiency of the two schemes, since different storage and linear
solver algorithms can be used to exploit these structural differences. In many cases, the Picard scheme
converges well and more efficiently, but for cases of gravity drainage, complex time-varying boundary
conditions, strongly nonlinear characteristic equations and saturated/unsaturated interfaces, it can fail
to converge or it may converge very slowly [19].

In this paper, we investigate the lookup table approach to enhance the performance of the Picard and
Newton iterative methods for cases where convergence difficulties are met, in particular for heterogeneous
soils. The lookup table method can be a cost-effective alternative to analytical evaluation of the soil
moisture retention curves, but its performance has not been examined in detail in the hydrological
modeling literature. Numerical results for three test problems illustrate the circumstances under which the
two iterative schemes can be expected to perform poorly and, thus, provide useful cases for investigating
alternative schemes, such as lookup table evaluation of heterogeneous soil characteristics.
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2. Richards’ Equation for Flow in Variably-Saturated Porous Media

Richards’ equation may be written in three standard forms, with either pressure head or moisture
content as dependent variables. These three forms of the saturated-unsaturated flow equation are the
“ψ-based” form, “θ-based” form and the “mixed (ψ− θ)” form. We assume that the porous media and
water are incompressible and that the air phase is infinitely mobile, so that the air pressure remains
constant. Finally, in our formulation, any source or sink terms are handled as boundary conditions.

For one-dimensional vertical flow in unsaturated soils, the pressure head-based Richards’ equation
is written as:

C(ψ)
∂ψ

∂t
=

∂

∂z
(K(ψ)(

∂ψ

∂z
+ 1)) (1)

where ψ is the pressure head [L], t is time [T], z denotes the vertical distance from reference elevation,
assumed positive upward [L], K(ψ) is the hydraulic conductivity [LT−1], C(ψ) = dθ

dψ is the specific

fluid capacity [L−1] and θ is the volumetric water content [L3L−3].
Usually, the ψ-based form is used for heterogeneous soils of both saturated and unsaturated flow

conditions. However, this formulation generally exhibits very poor preservation of mass balance,
unacceptable time-step limitations [26] and relatively slow convergence [36].

In contrast, the θ-based form is a conservation form by construction, i.e., it follows the mass
conservation law. In this form, mass balance is improved significantly, and rapidly convergent
solutions can be obtained. However, unfortunately, they are strictly limited to unsaturated conditions,
since in a saturated condition, the water content becomes constant and D = K

C(ψ)
= K dψ

dθ approaches
infinity. Furthermore, for multi-layered soils, θ cannot be guaranteed to be continuous across interfaces
separating the layers. Thus, this form is useful only for homogeneous media [37].

2.1. Constitutive Relationship

To complete the model formulation of Richards’ equation, we must specify the constitutive
relationship to describe the interdependence among fluid pressures, saturations and relative
permeabilities. There are several mathematical relationships for the constitutive or soil water retention
curves that are used in modeling. The most commonly-used relationships are the Brooks–Corey [38]
and the van Genuchten [39] equations. These two models are described as follows:

2.1.1. The Brooks–Corey Model

The constitutive relationships proposed by Brooks and Corey [38] are given by:

θ(ψ) = θr + (θs − θr)

(
ψd
ψ

)n
if ψ ≤ ψd (2)

θ(ψ) = θs i f ψ > ψd (3)

K(ψ) = Ks

[
θ(ψ) − θr

θs − θr

]3+ 2
n

if ψ ≤ ψd (4)

K(ψ) = Ks if ψ > ψd (5)

C(ψ) = n
θs − θr

|ψd|

(
Ψd
Ψ

)n + 1
if ψ ≤ ψd (6)

C(ψ) = 0 if ψ > ψd (7)

where θs is the saturated moisture content [L3L−3], θr is the residual moisture content [L3L−3],
ψd = − 1

α is the bubbling or air entry pressure head [L] and is equal to the pressure head to desaturate
the largest pores in the medium and m = 1− 1

n is a pore-size distribution index (dimensionless).
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2.1.2. The Van Genuchten Model

Perhaps the most widely-used constitutive relations for moisture content and hydraulic
conductivity are those of van Genuchten [39]. The model is given by:

θ(ψ) = θr +
θs − θr[

1 + |αψ|n
]m if ψ ≤ 0 (8)

θ(ψ) = θs if ψ > 0 (9)

K(ψ) = Ks

[
θ − θr

θs − θr

]0.5
1 −

[
1 −

(
θ − θr

θs − θr

) 1
m
]m

2

if ψ ≤ 0 (10)

K(ψ) = Ks if ψ > 0 (11)

C(ψ) = αmn
θs − θr[

1 + |αψ|n
]m + 1 |αψ|n − 1 if ψ ≤ 0 (12)

C(ψ) = 0 if ψ > 0 (13)

2.2. Spatial Discretization

For the numerical solution of Richards’ equation (1), we discretize the spatial domain using the
finite element Galerkin scheme and the time derivative term using a finite difference scheme. To
develop the finite element model, there are M − 1 discretized elements for M global nodes in the
problem domain.

The approximating function is:

ψ(z, t) ≈ ψ̂(z, t) =
M

∑
J=1

NJ(z)ψJ(t) (14)

where NJ(z) and ψJ(t) are linear Lagrange basis functions and nodal values of ψ at time t, respectively.
The method of weighted residuals is used to set the criteria to solve for the unknown coefficients.
In local coordinate space −1 ≤ ξ ≤ 1, the approximating function for each element (e) is
ψ̂(e) = ∑2

i = 1 N(e)
i (ξ)ψ

(e)
i (t) = 1

2 (1 − ξ)ψ
(e)
1 (t) + 1

2 (1 + ξ)ψ
(e)
2 (t), which we can write in vector

form as ψ̂(e) = (N(e)(ξ))
T

Ψ(e)(t). The global function (14) becomes:

ψ̂ =
M − 1

∑
e = 1

(N(e))
T

Ψ(e) =
M − 1

∑
e = 1

ψ̂(e) (15)

The symmetric weak formulation of Galerkin’s method applied to (1) yields the system of ordinary
differential equations [18]:

A(Ψ)Ψ + F(Ψ)
dΨ

dt
= q(t) − b(Ψ) (16)

where Ψ is the vector of undetermined coefficients corresponding to the values of pressure head at
each node, A is the stiffness matrix, F is the storage or mass matrix, q contains the specified Darcy flux
boundary conditions and b contains the gravitational gradient component. Over local subdomain
element Ω(e), we have:

A(e) =
∫

Ω(e)
K(e)

s Kr(ψ̂
(e))

dN(e)

dz
(

dN(e)

dz
)

T

dz (17)

b(e) =
∫

Ω(e)
K(e)

s Kr(ψ̂
(e))

dN(e)

dz
dz (18)
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F(e) =
∫

Ω(e)
C(ψ̂(e))N(e)(N(e))

T
dz (19)

Here, NT denotes the transpose of N.

2.3. Time Differencing

Equation (16) can be integrated by the weighted finite difference scheme. We obtain:

A(Ψk + λ)Ψk + λ + F(Ψk + λ)
Ψk + 1 − Ψk

∆t
= q(tk + λ) − b(Ψk + λ) (20)

where Ψk + λ = λΨk + 1 + (1 − λ)Ψk, with 0 ≤ λ ≤ 1 (λ is a weighting parameter) and k and
k + 1 denote the previous and current time levels.

The time step size to ensure a stable solution will be dependent on the spatial discretization, and
for nonlinear equations, there will in general also be a dependency on the form of the solution itself
at any given time. Equation (20) is O(∆t) accurate, except for λ = 1

2 . When λ = 1
2 , the discretized

scheme (20) corresponds to the Crank–Nicolson scheme.
The system of equations (20) is nonlinear in ψk+1, except when λ = 0, which corresponds to an

explicit Euler scheme. When λ > 0, the scheme becomes implicit. Some iteration or linearization
strategy is thus needed to solve the system of nonlinear equations for the implicit case. For λ = 1, the
scheme corresponds to the backward Euler scheme.

Consider:

f(Ψk + 1) = A(Ψk + λ)Ψk + λ + F(Ψk + λ)Ψk + 1 − Ψk

∆tk + 1 − q(tk + λ)

+b(Ψk + λ) = 0
(21)

To linearize the nonlinear System (21), the most common iterative schemes are Picard and Newton.
The Picard iterative scheme is more popular than Newton because the formulation of Picard is simple,
and it preserves the symmetry of the finite element matrices. On the other hand, the Newton method
requires the evaluation of Jacobian matrices and yields a nonsymmetric system. Because of this, the
Picard method is less costly, on a per iteration basis, than the Newton method. The Picard method
converges linearly, whereas Newton converges quadratically. Therefore, for some problems or under
certain accuracy constraints, Newton gives better convergence behavior than Picard [19].

2.4. Newton Scheme

Applied to (21), the Newton scheme [28] can be written as:

f′(ψk + 1,(m))(ψk + 1,(m + 1) − ψk + 1,(m)) = − f(ψk + 1,(m)) (22)

where the superscripts m and m + 1 denote the previous and current iteration levels. The Jacobian for
the system is:

f ′ij = λAij + 1
∆tk + 1 Fij + ∑

s

∂Ais
∂ψk + 1

j
ψk + λ

s

+ 1
∆tk + 1 ∑

s

∂Fis
∂ψk + 1

j
(ψk + 1

s − ψk
s ) + ∂bi

∂ψk + 1
j

(23)

expressed here in terms of ij-th component of the Jacobian matrix f′(Ψk + 1).

2.5. Picard Scheme

The Picard scheme has a simple formulation that can be obtained directly from (20) by iterating
with all linear occurrences of ψk + 1 taken at the current iteration level m + 1 and all nonlinear
occurrences at the previous level m [28]. We get:
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[
λAk + λ,(m) + 1

∆tk + 1 Fk + λ,(m)
]
(ψk + 1,(m + 1) − ψk + 1,(m))

= − f(ψk + 1,(m))
(24)

If we compare Equations (22) and (24), it can be seen that the Picard scheme is an approximation
of Newton’s method. The linearization of Newton produces a nonsymmetric system matrix, whereas
Picard yields a symmetric system. Since different storage and linear solver algorithms can be used
to exploit these structural differences, this factor is very important to assess the relative efficiency of
the two schemes. For the Newton scheme, we need to evaluate three derivative terms in the Jacobian,
implying that the Newton scheme is more costly and algebraically complex than Picard.

3. Methodology

To investigate the performance of the lookup table option of the subsurface flow model used in
this study [19], we consider three one-dimensional numerical test problems, the first two involving
vertical drainage through a layered soil from initially-saturated conditions and the third involving
one-dimensional flow into an initially very dry layered soil of sand and clay. There is a sharp
region produced in the moisture capacity and relative hydraulic conductivity curves for these test
problems. We examined the performance of the lookup table scheme in two ways: uniform and
non-uniform distributions of lookup points in the domain of the constitutive relationship curves for
both the Newton and Picard iterative schemes. Simple equally-spaced discretization of the moisture
capacity, water saturation, relative hydraulic conductivity and other retention curves is defined for
the uniform distributions of lookup table points. We have taken many points where the retention
curves are very sharp, and fewer points are used where the curves are varying less for the non-uniform
distribution case.

Dynamic time step sizes are adjusted according to the convergence behavior of the nonlinear
iteration scheme. During any time step, a nonlinear convergence tolerance Tol (= 10−3) is specified,
along with a maximum number of iterations, maxit (= 10). The starting simulation time step size is
∆t0 and continues until we reach the simulation time Tmax. If the convergence is achieved in a fewer
number of iterations than another pre-assigned number of iterations maxit1(= 8), then the current time
step size is increased by a specified magnification factor, denoted by ∆tmag(= 1.20), and this is repeated
until we reach the maximum time step size ∆tmax. It remains unchanged if the convergence required
falls between maxit1 and maxit2(= 5) iterations. The time step size is decreased by a reduction factor
∆tred(= 0.5) to a minimum step size ∆tmin if the convergence required less than maxit2. If convergence
is not achieved within the maximum number of iterations, then back-stepping occurs, that is the
solution is recomputed at the current time level using a smaller time step, reduced by the factor ∆tred
to a minimum size of ∆tmin. The infinity norm (l∞) is used as the convergence termination criterion for
both the Newton and Picard methods, that is when

∣∣∣∣∣∣ψk + 1, (m + 1) − ψk + 1, (m)
∣∣∣∣∣∣≤ Tol is satisfied

then convergence is achieved.
All simulations were performed with the CATHY (CATchment HYdrology) model [19,40], which

is a physically-based hydrological model where the surface module resolves the one-dimensional
diffusion wave equation and the subsurface module solves the three-dimensional Richards’ equation.
All runs were executed on a Dell Inspiron 2.56-GHz laptop computer.

4. Results

4.1. Test Problem 1

The main purposes of this first test case are: (i) to verify that we have correctly implemented the
lookup table method (i.e., that it produces the same solutions as analytical evaluation of the nonlinear
soil characteristics); (ii) to assess whether the lookup table method is robust (i.e., that it produces
accurate solutions over a range of discretizations, as well as for varying numbers and distributions
of lookup points); and (iii) to compare the computational efficiency and accuracy (mass balance
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error) of the lookup table approach against the analytical approach. This assessment is carried out
by considering a one-dimensional vertical drainage through a layered soil of 2 m in depth from
initially saturated conditions. Initially, the pressure head at the base of the column is reduced from
200 cm to 0 cm. During the subsequent drainage, for a duration of 12.15 d (1,050,000 s), a no flow
boundary condition is imposed at the top, and a Dirichlet boundary condition is imposed at the base
of the column. The domain of the soil column is parameterized by the van Genuchten relationships.
The hydraulic properties of the soils are given in Table 1. The soil layers have different saturated
hydraulic conductivity (Ks), but the same values for the van Genuchten parameters (θs, θr, α and n).
The soil profile is Soil 1 for 0 < z < 80 cm and 140 cm < z < 200 cm and Soil 2 for 80 cm < z < 140 cm.

Table 1. Soil hydraulic properties used in Test Problem 1.

Parameters Soil 1 Soil 2

θs 0.35 0.35
θr 0.07 0.07

α (cm−1) 0.0286 0.0286
n 1.5 1.5

Ks (cm/s) 9.81 × 10−5 9.81 × 10−3

To obtain the analytical and lookup numerical solutions, the flow domain is discretized using
two uniform grids consisting of 50 and 150 layers. The time discretizations are performed in a simple
manner using a constant value ∆t = 100 s and 1000 s. The numerical results for this problem are
obtained using Picard iteration and with 31 and 151 as the number of lookup points (NLKP) distributed
both uniformly and non-uniformly for each set of layer and time step discretizations. Figure 1 shows
the saturation profiles at four different times, at the start of drainage (0 s), at 250,000 s (2.9 d), at
550,000 s (6.4 d) and at 1,050,000 s (12.15 d), for both the analytical and lookup table approaches for the
150-layer, ∆t = 100 s discretization case. A very good agreement is exhibited between the analytical
and lookup table results for both NLKP values, showing the accuracy of the lookup table approach
even for a relatively small number of lookup points. Table 2 shows that the lookup table approach
performs consistently (high accuracy) for all combinations of temporal and grid discretization and the
number and distribution of lookup points. It is also of the same order of efficiency as the analytical
approach (slightly better than analytical for NLKP = 31 and slightly worse for NLKP = 151).
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Figure 1. Saturation profiles for Test Problem 1 at four different times for the analytical method (red)
and for the lookup table method with 31 (blue) and 151 (green) lookup points distributed uniformly.
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Table 2. Performance of the lookup table and analytical methods for Test Problem 1.

Performance
criterion

No. of
Layers NLKP

∆t = 100 s ∆t = 1000 s

Lookup Table
Analytical

Lookup Table
Analytical

Uniform Non-Uniform Uniform Non-Uniform

No. of time
steps

50
31 10,598 10,595

10,600
1167 1170

1182151 10,594 10,594 1165 1175

150
31 10,689 10,704

10,800
1323 1282

1402151 10,690 10,699 1300 1273

Mass balance
error (m3)

50
31 −6.23 × 10−6 −6.72 × 10−6

−5.05 × 10−6 −4.86 × 10−5 −6.01 × 10−5
−5.84 × 10−5

151 −8.31 × 10−6 −8.05 × 10−6 −6.21 × 10−5 −6.38 × 10−5

150
31 −5.24 × 10−6 −5.93 × 10−6

−8.61× 10−6 −4.24 × 10−5 −468 × 10−5
−5.47 × 10−5

151 −8.25 × 10−6 −7.72 × 10−6 −4.72 × 10−5 −4.79 × 10−5

CPU (s)
50

31 449.01 438.01
536.82

77.75 74.76
86.34151 816.03 830.10 125.15 132.36

150
31 1661.33 1550.83

1779.71
425.87 396.35

496.56151 2686.82 2731.21 666.32 656.91

4.2. Test Problem 2

For Test Cases 2 and 3, we will focus solely on the lookup table approach in order to examine its
performance under different configurations. Unlike the first test case, Test Problems 2 and 3 will feature
heterogeneity not only in Ks, but also in the retention curve parameters. Indeed, Test Problem 2 is
identical to Test Problem 1, but with different layer thicknesses and with the addition of heterogeneity
in the soil moisture retention curves, represented this time with the Brooks–Corey model. This problem
is considered to be a challenging test for numerical methods because a sharp discontinuity in the
moisture content occurs at the interface between two material layers [41–43]. During downward
draining, the middle coarse soil tends to restrict drainage from the upper fine soil, and high saturation
levels are maintained in the upper fine soil for a considerable period of time. The hydraulic properties
of the soils are given in Table 3. The soil profile is Soil 1 for 0 < z < 60 cm and 120 cm < z < 200 cm and
Soil 2 for 60 cm < z < 120 cm.

Table 3. Soil hydraulic properties used in Test Problem 2.

Parameters Soil 1 Soil 2

θs 0.35 0.35
θr 0.07 0.035

α (cm−1) 0.0286 0.0667
n 1.5 3.0

Ks (cm/s) 9.81 × 10−5 9.81 × 10−3

To compare the performance between the uniform and non-uniform distributions of lookup
points, a fine mesh of 150 elements and a coarser mesh of 50 elements with two time step sizes
(∆tmax = 100 s and 1000 s) and two sets of lookup table points (NLKP = 31 and 151) in the domain
of the moisture curves are considered. Eight runs were performed for each of the iteration schemes
(Picard and Newton).

The soil moisture curves of the moisture content (θ) and specific moisture capacity (C) for the
uniform and non-uniform distribution of lookup points evaluated by the Brooks–Corey model are
presented in Figure 2 (Soil 1) and Figure 3 (Soil 2). Highly nonlinear natures are clearly shown in the
illustrated figures and make good challenges for a numerical algorithm.
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Figure 2. Soil moisture curves for the uniform and non-uniform lookup table points of Soil 1.

Hydrology 2017, 4, 33  9 of 23 

 

To compare the performance between the uniform and non-uniform distributions of lookup 

points, a fine mesh of 150 elements and a coarser mesh of 50 elements with two time step sizes (∆𝑡𝑚𝑎𝑥 

= 100 s and 1000 s) and two sets of lookup table points (NLKP = 31 and 151) in the domain of the 

moisture curves are considered. Eight runs were performed for each of the iteration schemes (Picard 

and Newton). 

The soil moisture curves of the moisture content (𝜃) and specific moisture capacity (𝐶) for the 

uniform and non-uniform distribution of lookup points evaluated by the Brooks–Corey model are 

presented in Figure 2 (Soil 1) and Figure 3 (Soil 2). Highly nonlinear natures are clearly shown in the 

illustrated figures and make good challenges for a numerical algorithm. 

  
(a) (b) 

Figure 2. Soil moisture curves for the uniform and non-uniform lookup table points of Soil 1. 

  
(a) (b) 

Figure 3. Soil moisture curves for the uniform and non-uniform lookup table points of Soil 2. 

Figure 4 shows the saturation profiles at time 12.15 days for the various combinations simulated 

with the Picard scheme. It is shown that the solutions for 31 and 151 uniform and non-uniform lookup 

table points coincide very well. This implies that for the soil moisture retention curves, 31 lookup 

points are sufficient to obtain an efficient numerical solution of Richards’ equation. 

-2 -1.5 -1 -0.5 0
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 (m)

M
oi

st
ur

e 
C

on
te

nt
 :

 

 

Uniform NLKP = 31

Uniform NLKP = 151

Non-uniform NLKP = 31

Non-uniform NLKP = 151

-2 -1.5 -1 -0.5 0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 (m)

S
p

e
ci

fic
 M

o
is

tu
re

 C
a

p
a

ci
ty

 C
: (

m
-1

)

 

 

Uniform NLKP = 31

Uniform NLKP = 151

Non-uniform NLKP = 31

Non-uniform NLKP = 151

-2 -1.5 -1 -0.5 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 (m)

M
oi

st
ur

e 
C

on
te

nt
 :

 

 

Uniform NLKP = 31

Uniform NLKP = 151

Non-uniform NLKP = 31

Non-uniform NLKP = 151

-2 -1.5 -1 -0.5 0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 (m)

S
p

e
c
ifi

c
 M

o
is

tu
re

 C
a

p
a

c
ity

 C
: 
(m

-1
)

 

 

Uniform NLKP = 31

Uniform NLKP = 151

Non-uniform NLKP = 31

Non-uniform NLKP = 151

Figure 3. Soil moisture curves for the uniform and non-uniform lookup table points of Soil 2.

Figure 4 shows the saturation profiles at time 12.15 days for the various combinations simulated
with the Picard scheme. It is shown that the solutions for 31 and 151 uniform and non-uniform lookup
table points coincide very well. This implies that for the soil moisture retention curves, 31 lookup
points are sufficient to obtain an efficient numerical solution of Richards’ equation.Hydrology 2017, 4, 33  10 of 23 
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Figure 4. Saturation predictions after 12.15 days for the uniform and non-uniform lookup table point
cases, Picard scheme.
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The time stepping, nonlinear convergence and cumulative mass balance error behavior for
150 layers with a step size of 1000 s of uniform and non-uniform NLKP are illustrated in Figures 5–7,
respectively. Graphs for the 150 layer simulation with 100 s and for the 50 layer cases are not presented
here, but the observed results are discussed.

The graphical representation of time stepping (Figure 5) for NLKP = 31 shows that the
non-uniform case never achieved the assigned maximum time step size of 1000 s for 150 layers
except at the beginning and end time and that the uniform distribution shows the same behavior
during the simulation period 1.0 × 105 s to 2 × 105 s. On the other hand, for NLKP = 151, both
uniform and non-uniform cases of 150 layers achieved a maximum step size 1000 s. The performance
of 50 layers with 31 lookup points is similar to 150 layers. Furthermore, it is found that the simulation
is completed with the maximum step size 1000 s, except at the time near about 2 × 105 s for 50 layers
in the case of the uniform distribution.

For the Newton scheme, after 2.122 × 105 s the uniform and non-uniform cases for all of the
vertical layers with NLKP = 31 were unable to achieve the maximum step size 100 s throughout the
simulation. Better performance is shown for the 1000 s case of 50 and 150 layers with NLKP = 31. For
NLKP = 151, the time stepping behavior of the uniform and non-uniform cases is almost the same for
both vertical discretizations.

In Figure 6, the top two plots show the nonlinear iterations per time step of the Picard technique.
Here, it is clear that the non-uniform distribution has difficulty meeting the convergence criterion
for 150 layers with NLKP = 31 (similar results were obtained for 50 layers), whereas the uniform
distribution needed only one iteration per time step for time step sizes of 1000 s. For 150 layers (as
well as 50 layers) with NLKP = 151, both the uniform and non-uniform cases give almost the same
behavior. The Newton scheme (bottom two plots of Figure 6) shows similar behaviors as we found in
the Picard case. In this case, the uniform distribution of NLKP = 31 performs better than NLKP = 151.

Figure 7 shows the profiles of total volumetric mass balance error obtained from the uniform
and non-uniform case of Picard and Newton techniques of 150 layers. The uniform distribution of
NLKP = 31 and NLKP = 151 shows smaller errors for both the Picard and Newton schemes.

The comparison of the computational performance of the lookup table tests is summarized in
Table 4 for the Picard and Newton schemes for the runs with and ∆t = 100 s. Efficiency analysis of
performance indicators for the Picard and Newton schemes is discussed as follows.
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Figure 5. Cont.
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Figure 5. Comparison of time stepping behavior of Picard (a,b) and Newton (c,d) scheme of uniform
(red) and non-uniform (blue) of 31 (a,c) and 151 (b,d) lookup points for 150 layers.
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Figure 6. Comparison of convergence behavior of Picard (a,b) and Newton (c,d) scheme of uniform
(red) and non-uniform (blue) of 31 (a,c) and 151 (b,d) lookup points for 150 layers.

For the Picard scheme, the case of 50 layers, uniform distributions give better results for all criteria
except CPU with ∆t = 100 s for both sets (31 and 151) of lookup points; however, for the ∆t = 1000 s
case (results not shown), the non-uniform distribution gives better results on the basis of mass balance
error and linear iterations per nonlinear iteration, and for 150 layers of NLKP = 31 with the 100 s
and 1000 s cases, the performance of uniform distribution is better than non-uniform on the basis of
volumetric mass balance error. On the other hand, for 151 lookup points, the non-uniform case results
are better than the uniform case for both time step sizes. For 50 layers and NLKP = 31, in terms of
mass balance in percentage error, the uniform case performs better than the non-uniform for the 100 s
time step size, but for the 1000 s case, the performance is reversed. Non-uniform performs better than
uniform for both time step sizes with NLKP = 151. For the 150 layers case, the uniform distribution is
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the better strategy for all of the investigated cases (100 s and 1000 s and NLKP = 31 and 151). For both
the 50 and 150 layer cases, when 100 s is considered, the uniform distribution takes fewer time steps
for every set of NLKP. For 150 layers with NLKP = 31, the uniform case needs only 10,558 time steps to
complete the simulation, whereas the non-uniform lookup distribution takes many more time steps
(28,699). For both layer discretizations with NLKP = 151, the uniform and non-uniform cases take
a comparable number of time steps for the time step size of 1000 s, but for the 31 lookup point case
(with 100 s), uniform is much better than non-uniform. The uniform distribution is better at achieving
the maximum time step size for 100 s for both vertical layers with 31 and 151 NLKP. For 1000 s and
NLKP = 151, the non-uniform distribution case is better than the uniform distribution. On the overall
assessment of this case, the uniform distribution points need fewer iterations to achieve convergence
for all of the cases. The results show that the uniform distribution needs fewer linear iterations per
nonlinear iteration to satisfy the termination criteria, except for the case of NLKP = 151 with 1000 s of
150 layers. Very little back stepping (only 17) occurs in the case of uniform distribution, but for the
non-uniform case, this happened 6969 times for 150 layers with NLKP = 31. Thus, a back stepping
assessment implies uniform distributions are preferable.Hydrology 2017, 4, 33  12 of 23 
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Figure 7. Comparison of cumulative mass balance behavior of Picard (a,b) and Newton (c,d) scheme
of uniform (red) and non-uniform (blue) of 31 (a,c) and 151 (b,d) lookup points for 150 layers.

For the Newton scheme, the findings are: for the 100 s case, at 50 layers, the non-uniform
distribution gives better results than the uniform distribution for NLKP = 31 for both cumulative mass
balance error in m3 and also in percentage, but completely opposite results are found for NLKP = 151.
Uniform distributions of 150 layers clearly show superior performance for both NLKP with 100 s.
For the 1000 s case, it is the non-uniform distributions that perform better. For the NLKP = 151 case,
uniform is better than non-uniform for both grid discretizations, but for NLKP = 31, non-uniform
takes fewer time steps than the uniform distribution for 100 s. Except for NLKP = 31 of 50 layers
for the 1000 s case, uniform needs fewer time steps than non-uniform. The uniform distribution
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with 151 lookup points of both spatial discretizations achieved bigger average time step sizes for
100 s and 1000 s, but for 31 lookup points, the non-uniform case achieves a larger average time
step size. For all of the cases, uniform distributions take fewer nonlinear iterations per time step to
meet the convergence criterion. For the 50 layer case, non-uniform needs fewer linear iterations per
nonlinear iteration to satisfy the termination criteria for all of the cases. For the 150 layers case, the
uniform distribution leads to advanced performance except for NLKP = 151 with 100 s. For 50 layers,
the uniform distribution of lookup points does more back stepping than the non-uniform case for
NLKP = 31, but when NLKP = 151, it does less back stepping for both step sizes. For 150 layers with
NLKP = 151, the uniform distribution does less back stepping than the non-uniform, but with 31 points,
the opposite occurred. The number of solver failures is less for all of the cases of uniform distributions
with 150 layers, but it is more for 50 layers.

Table 4. Computational performance of the lookup table method for uniform and non-uniform cases
of Picard and Newton iteration with discretizations of 50 and 150 layers and ∆t = 100 s.

Performance
Criterion

No. of
Layers NLKP

Picard Newton

Uniform Non-Uniform Uniform Non-Uniform

Mass balance error
(m3)

50
31 5.01 × 10−6 −1.13 × 10−5 8.15 × 10−6 6.60 × 10−6

151 8.03 × 10−6 7.51 × 10−5 9.59 × 10−6 9.73 × 10−6

150
31 3.34 × 10−6 −6.69 × 10−4 6.71 × 10−6 −1.35 × 10−5

151 5.28 × 10−6 5.06 × 10−6 8.26 × 10−6 9.00 × 10−6

Relative mass
balance error (%)

50
31 −3.98 × 10−2 8.93 × 10−2 6.47 × 10−2 −5.12 × 10−2

151 −6.56 × 10−2 −6.04 × 10−2 −7.72 × 10−2 −7.84 × 10−2

150
31 −1.28 × 10−2 5.04 × 100 −5.33 × 10−2 1.07 × 10−1

151 −1.38 × 10−2 −4.07 × 10−2 −6.65 × 10−2 −7.25 × 10−2

No. of time steps
50

31 10,567 10,583 35,081 14,074
151 10,566 10,584 29,024 29,993

150
31 10,558 28,699 85,175 61,544

151 10,562 10,573 79,014 84,283

Avg. ∆t(s)
50

31 99.37 87.10 2.9.93 74.61
151 99.38 89.56 36.18 35.08

150
31 99.45 36.59 12.33 17.06

151 99.41 99.31 13.29 12.46

NL. iter/time step
50

31 1.03 1.49 3.24 2.98
151 1.04 1.04 3.05 3.08

150
31 1.03 4.00 3.39 3.82

151 1.03 1.03 3.38 3.39

Lin. iter/NL. iter
50

31 7.73 6.86 24.57 17.74
151 7.77 7.76 24.46 22.20

150
31 7.55 3.97 15.52 32.90

151 7.60 7.57 15.18 14.15

No. of back steps
50

31 19 27 7898 1290
151 20 25 5972 6226

150
31 17 6969 20,245 13,863

151 19 22 18,698 20,093

Solver failures
50

31 0 0 0 0
151 0 0 0 0

150
31 0 0 0 0

151 0 0 0 0

CPU (s)
50

31 767.67 600.86 31,101.61 9091.67
151 1329.46 721.97 27,540.17 19,032.22

150
31 2506.91 14,738.28 145,879.06 121,539.73

151 2214.19 2160.01 204,598.27 138,211.30

Avg. = Average, NL. = Nonlinear, iter = Iteration, Lin. = Linear.
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The root mean squared error (RMSE) behavior for the lookup tests under Picard and Newton
iterations is shown in Figure 8 for the case 100 s, and the results are summarized in Table 5. The RMSEs
are evaluated using the generated reference solution (301 nodes in the vertical soil column, 301 lookup
points, step size 1 s and specified nonlinear tolerance 10−3. The results from these figures show that
the uniform distribution scheme is as efficient as the non-uniform distribution method for all cases.
Similar performance is observed for the step size of 1000 s of 50 and 150 layers.
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Figure 8. Computed RMSE for Picard (a,b) and Newton (c,d) schemes for the uniform (red) and
non-uniform (blue) NLKP = 31 (a,c) and NLKP = 151 (b,d) lookup point cases for 150 layers. RMSE is
calculated at 250,000 s (solid), 550,000 s (dotted) and 1,050,000 s (dashed).

Table 5. RMSE of the lookup table method for uniform and non-uniform cases of Picard and Newton
iteration with discretizations of 50 and 150 layers and ∆t = 100 s.

Layers NLKP Time (s)
Picard Newton

Uniform Non-Uniform Uniform Non-Uniform

50 31
250,000 9.60 × 10−3 4.96 × 10−2 9.43 × 10−3 4.97 × 10−2

550,000 1.50 × 10−2 2.94 × 10−2 1.46 × 10−2 2.94 × 10−2

1,050,000 9.60 × 10−3 1.14 × 10−2 9.17 × 10−3 1.15 × 10−2

50 151
250,000 4.70 × 10−3 4.90 × 10−2 5.21 × 10−3 5.59 × 10−3

550,000 3.70 × 10−3 3.80 × 10−2 3.89 × 10−3 4.01 × 10−3

1,050,000 3.60 × 10−3 3.80 × 10−2 3.76 × 10−3 3.81 × 10−3

150 31
250,000 8.10 × 10−3 5.02 × 10−2 8.04 × 10−3 5.00 × 10−2

550,000 1.50 × 10−2 2.84 × 10−2 1.49 × 10−2 2.97 × 10−2

1,050,000 9.30 × 10−3 1.14 × 10−2 9.24 × 10−3 1.19 × 10−2

150 151
250,000 1.10 × 10−3 1.60 × 10−2 1.32 × 10−3 1.64 × 10−3

550,000 1.00 × 10−3 1.60 × 10−2 1.04 × 10−3 1.48 × 10−3

1,050,000 8.21 × 10−4 1.40 × 10−2 7.72 × 10−4 1.29 × 10−3
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4.3. Test Problem 3

The present test problem involves one-dimensional flow into an initially dry, 3 m deep, layered
soil of sand and clay. The van Genuchten model is used to describe the soil moisture retention curves.
The hydraulic properties of the sand and clay are given in Table 6, and the initial pressure head is
set to −480 cm. The soil profile is sand for 0 < z < 100 cm and 200 cm < z < 300 cm and clay for
100 cm < z < 200 cm. A no-flow boundary condition is applied everywhere except for a water flux rate
of 50 cm/day that is applied to the top of the vertical soil column, and the simulation period is one
day. This problem was specifically devised for testing the numerical algorithm’s ability to survive both
very dry conditions and transitions to a saturated state.

Table 6. Soil hydraulic properties used in Test Problem 3.

Parameters Sand Clay

θs 0.3658 0.4686
θr 0.0286 0.1060

α (cm−1) 0.0280 0.0104
n 2.2390 1.3954

Ks (cm/s) 6.62 × 10−3 1.5167 × 10−4

To explore the behavior of lookup table points for solving Richards’ equation, two levels of spatial
grid sizes, ∆z = 5 cm (60 layers) and ∆z = 2.5 cm (120 layers), three different time step sizes,
10 s, 800 s and 1600 s, and two sets of lookup points (31 and 151) in the soil moisture retention curves
were used in the simulation. This kind of test problem is very complicated to simulate. The lookup
points are concentrated in the sharp region of the moisture curves for the non-uniform distribution
case. There are 24 runs in total for the iteration schemes (Picard and Newton).

The van Genuchten soil moisture curves for the uniform and non-uniform distribution of lookup
points are presented in Figures 9 and 10. The computed water saturation after one day is illustrated
in Figure 11 for all cases of uniform and non-uniform distribution strategies. All solutions obtained
using both grid discretizations are in good agreement. Although numerical solutions to hydrological
models are known to be quite sensitive to grid resolution [44–46], both of the grid sizes used in this test
problem (60 layers and 120 layers) are sufficient to capture accurately the dynamics of this infiltration
test case.Hydrology 2017, 4, 33  16 of 23 
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Figure 9. Sandy soil moisture curves for the uniform and non-uniform lookup table point cases.
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Figure 10. Clay soil moisture curves for the uniform and non-uniform lookup table point cases.
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Figure 11. Computed water saturation after 1 day for uniform and non-uniform lookup points.

The time stepping, nonlinear convergence and cumulative mass balance error plots for the
120 layers case of uniform and non-uniform NLKP are presented in Figures 12–14 for the Picard and
Newton schemes. From the Picard time stepping graph (top two of Figure 12), the uniform distribution
takes bigger time steps for the two sets of lookup points with 800 s and 1600 s from the beginning to
40,000 s, after which, there is little difference between the behavior of the uniform and non-uniform
distributions. For 10 s, both the uniform and non-uniform cases run with the maximum step size until
the end of the simulation. For the Newton case, after 40,000 s, the non-uniform case performs better
for all runs with 1600 s. Before this time, the uniform and non-uniform cases behave comparably for
all runs. The evolution of nonlinear Picard iterations (Figure 13) shows that the non-uniform case
needs fewer iterations per time step compared to the uniform distribution of 800 s and 1600 s step
sizes for each NLKP. Better performance is shown for the case of 10 s. On the other hand, converse
results are obtained for the Newton run. The dissimilarity in performance of the two iterative schemes
on account of convergence behavior is exhibited for this test problem compared to the previous
problem. The cumulative mass balance error graphs for Picard and Newton (Figure 14) show that
Picard performs better with uniformly-distributed lookup points, while Newton does better in the
non-uniform case.
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Figure 12. Comparison of time stepping behavior of Picard (a,b) and Newton (c,d) scheme of uniform
(red) and non-uniform (blue) of 31 (a,c) and 151 (b,d) lookup points of 120 layers for the step size 10 s
(solid), 800 s (dashed) and 1600 s (dot-dashed).
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Figure 13. Comparison of convergence behavior of Picard (a,b) and Newton (c,d) scheme of uniform
(red) and non-uniform (blue) of 31 (a,c) and 151 (b,d) lookup points of 120 layers for the step size 10 s
(solid), 800 s (dashed) and 1600 s (dot-dashed).

Hydrology 2017, 4, 33  18 of 23 

 

  
(c) (d) 

Figure 13. Comparison of convergence behavior of Picard (a and b) and Newton (c and d) scheme of 

uniform (red) and non-uniform (blue) of 31 (a and c) and 151 (b and d) lookup points of 120 layers for 

the step size 10 s (solid), 800 s (dashed) and 1600 s (dot-dashed). 

  
(a) (b) 

  
(c) (d) 

Figure 14. Comparison of cumulative mass balance behavior for Picard (a and b) and Newton (c and 

d) scheme of uniform (red) and non-uniform (blue) of 31 (a and c) and 151 (b and d) lookup points of 

120 layers for the step size 10 s (solid), 800 s (dashed) and 1600 s (dot-dashed). 

Table 7 summarizes the results of the lookup table tests of the numerical model for the Picard 

and Newton iterative schemes. The computational performances are discussed one by one for the 

Picard and Newton schemes as follows. 

 

 

 

 

0 2 4 6 8 10

x 10
4

0

1

2

3

x 10
-4

Time (s)

C
um

. M
as

s 
B

al
an

ce
 E

rr
or

 (
m

3
)

0 2 4 6 8 10

x 10
4

0

1

2

3

4

5

6
x 10

-4

Time (s)

C
um

. M
as

s 
B

al
an

ce
 E

rr
or

 (
m

3
)

0 2 4 6 8 10

x 10
4

-2

0

2

4

6

8

10

12

14
x 10

-4

Time (s)

C
um

. M
as

s 
B

al
an

ce
 E

rr
or

 (
m

3
)

0 2 4 6 8 10

x 10
4

-2

0

2

4

6

8

10

12
x 10

-4

Time (s)

C
u
m

. 
M

a
ss

 B
a
la

n
ce

 E
rr

o
r 

(m
3
)

Figure 14. Comparison of cumulative mass balance behavior for Picard (a,b) and Newton (c,d) scheme
of uniform (red) and non-uniform (blue) of 31 (a,c) and 151 (b,d) lookup points of 120 layers for the
step size 10 s (solid), 800 s (dashed) and 1600 s (dot-dashed).

Table 7 summarizes the results of the lookup table tests of the numerical model for the Picard and
Newton iterative schemes. The computational performances are discussed one by one for the Picard
and Newton schemes as follows.
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Table 7. Computational performance of the lookup table method for uniform and non-uniform cases
of Picard and Newton iteration with discretizations of 60 and 120 layers and step size 10 s.

Performance
Criterion

No. of
Layers NLKP

Picard Newton

Uniform Non-Uniform Uniform Non-Uniform

Mass balance error
(m3)

60
31 2.05 × 10−5 2.05 × 10−5 1.87 × 10−5 1.80 × 10−5

151 2.11 × 10−5 2.03 × 10−5 1.91 × 10−5 1.95 × 10−5

120
31 2.01 × 10−5 1.92 × 10−5 1.68 × 10−5 1.62 × 10−5

151 2.01 × 10−5 2.00 × 10−5 1.72 × 10−5 1.73 × 10−5

Relative mass
balance error (%)

60
31 1.03 × 10−1 1.00 × 10−1 9.33 × 10−2 9.02 × 10−2

151 1.06 × 10−1 1.02 × 10−1 9.54 × 10−2 9.94 × 10−2

120
31 1.01 × 10−1 9.60 × 10−2 8.42 × 10−2 8.08 × 10−2

151 1.02 × 10−1 9.98 × 10−2 8.62 × 10−2 8.63 × 10−2

No. of time steps
60

31 8677 8713 11084 10887
151 8643 8678 11094 11091

120
31 8672 8785 16644 15978

151 8644 8671 16835 16651

Avg. ∆t(s)
20

31 9.957 9.916 7.795 7.936
151 9.997 9.956 7.778 7.790

120
31 9.963 9.835 5.191 5.407

151 9.995 9.964 5.132 5.189

NL. iter/time step
60

31 1.66 1.70 3.39 3.28
151 1.61 1.66 3.41 3.39

120
31 1.67 1.77 4.07 3.90

151 1.64 1.67 4.06 4.07

Lin. iter/NL. iter
60

31 5.39 5.37 3.78 4.26
151 5.44 5.33 3.74 3.39

120
31 5.28 5.08 3.42 3.79

151 5.28 5.22 3.38 3.57

No. of back steps
60

31 26 50 12 55
151 2 27 0 13

120
31 22 96 225 392

151 1 21 201 232

Solver failures
60

31 0 0 0 0
151 0 0 0 0

120
31 0 0 0 0

151 0 0 0 0

CPU (s)
60

31 955.67 539.83 4059.77 2520.44
151 1531.51 615.81 5104.81 2700.34

120
31 1648.28 1114.16 11,925.06 10,494.79

151 2860.21 1179.54 16,776.09 12,213.67

Non-uniform spatial discretizations in the retention curves give smaller volumetric mass balance
errors for all layers and step sizes of the Picard iterative technique. According to the results in
percentage mass balance error, the non-uniform case again performs better. For all combinations of
NLKP and step sizes, the uniform allocation approach required a smaller number of time steps than
the non-uniform case to complete the one-day simulation. On the basis of average time step size per
time step, for all categories, the uniform distribution attained a larger value than the non-uniform case.
Except for the time step size 1600 s case, non-uniform meshes needed fewer nonlinear iterations per
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time step to meet the convergence criteria. For each selection of NLKP with every time step size, less
back stepping occurred for the uniform case.

For the Newton scheme, observations are: uniformly distributed lookup points produce smaller
volumetric mass balance errors than the non-uniform case for 800 s and 1600 s and for both settings
of NLKP and vertical layer discretization. On the other hand, for the 10 s time step size, very close
values are obtained for the uniform and non-uniform approaches. On the basis of percentage error of
volumetric mass balance outcomes, the same behavior is found for uniform and non-uniform cases, as
we saw for total volumetric mass balance error. The uniform strategy needs many more time steps to
complete the simulation for the cases of time step size 800 s and 1600 s for 120 layers. For NLKP = 31
of 60 layers, the average time step for uniform distributions is larger than for non-uniform in the
case of 10 s and 800 s, but for the 1600 s, the non-uniform case is larger. In the case of NLKP = 31 of
120 layers, the non-uniform achieves bigger step sizes for 10 s and 800 s, but not for the 1600 s case.
For NLKP = 151 of 120 layers, in the 800 s and 1600 s cases, uniform distributions perform better,
but not for the 10 s case. For the 60 layers case, the non-uniform distribution takes fewer nonlinear
iterations per time step except for the 1600 s case. In the case of 10 s with NLKP = 151 of 120 layers, the
uniform and non-uniform runs achieve a very close value of nonlinear iterations per time step (4.06 and
4.07, respectively). Fewer back steps occur for all of the uniform distribution cases compared to the
non-uniform distribution of lookup points. There is little difference between uniform and non-uniform
distributions in terms of linear solver failures.

The RMSE performance for uniform and non-uniform distributions of lookup points is shown
in Figure 15 for the Picard (top two) and Newton (bottom two) schemes. The numerically-generated
reference solution is made with a dense grid, ∆z = 1.25 cm (240 layers), NLKP = 301, time step size
is 1 s, convergence tolerance of 10−3. The comparison of calculated RMSE at three different times
(32,000 s, 56,000 s and 86,400 s) for both cases are presented in Table 8. For the Picard method, for
NLKP = 31 with 10 s, the uniform case shows smaller error only at time 32,000 s, while at times 56,000 s
and 86,400 s, the non-uniform case performs better. Note that, for 800 s and 1600 s, the non-uniform
case gives smaller values than the uniform case for both layers, except at time 56,000 s. For NLKP = 151
and 60 layers, the uniform case shows smaller root mean squared errors than non-uniform, but for
120 layers, the values are same at the three time levels for 10 s. For 800 s and 1600 s, the non-uniform
distribution performs better for each of the layers at the three indicated simulation time levels. For the
Newton iterative scheme, we found that the RMSE values at the three different times for the uniform
distribution are smaller than for the non-uniform distribution for all cases except 10 s.

Table 8. RMSE of the lookup table of method for uniform and non-uniform cases of Picard and Newton
iteration with discretizations of 60 and 120 layers and step size 10 s.

Layers NLKP Time (s)
Picard Newton

Uniform Non-Uniform Uniform Non-Uniform

60 31
32,000 1.10 × 10−3 6.70 × 10−3 1.10 × 10−3 6.80 × 10−3

56,000 4.20 × 10−3 3.80 × 10−3 4.20 × 10−3 3.90 × 10−3

86,400 4.70 × 10−3 1.90 × 10−3 4.80 × 10−3 2.00 × 10−3

60 151
32,000 1.10 × 10−3 1.10 × 10−3 3.95 × 10−3 1.10 × 10−3

56,000 2.60 × 10−3 2.80 × 10−3 2.60 × 10−3 2.80 × 10−3

86,400 1.10 × 10−3 1.40 × 10−3 1.20 × 10−3 1.50 × 10−3

120 31
32,000 2.10 × 10−3 8.10 × 10−3 2.20 × 10−3 8.20 × 10−3

56,000 3.20 × 10−3 2.70 × 10−3 3.00 × 10−3 2.90 × 10−3

86,400 4.90 × 10−3 4.30 × 10−3 4.80 × 10−3 4.10 × 10−3

120 151
32,000 2.10 × 10−3 2.10 × 10−3 2.20 × 10−3 2.20 × 10−3

56,000 4.00 × 10−3 4.00 × 10−3 3.70 × 10−3 3.70 × 10−3

86,400 4.70 × 10−3 4.70 × 10−3 4.50 × 10−3 4.50 × 10−3
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Figure 15. Computed RMSE for Picard (a,b) and Newton (c,d) schemes for the uniform (red) and
non-uniform (blue) NLKP = 31 (a,c) and NLKP = 151 (b,d) lookup point cases for 120 layers and step
size 10 s. RMSE is calculated at 32,000 s (solid), 56,000 s (dashed) and 86,400 s (dot-dashed).

5. Conclusions

We have shown that the lookup table method for evaluating the soil moisture retention curves in
Richards’ equation-based models is an accurate and efficient alternative to analytical evaluation that
can be useful for dealing with heterogeneous problems. The comparative performance between the
uniform and non-uniform distribution options for the lookup table points depends on the indicators
being examined. If we focus on the number of time steps, average time step size, nonlinear iterations
per time step, linear iterations per nonlinear iteration, back stepping and solver failures, we can say
that the uniform distribution is the better strategy. In terms of total volumetric and percentage mass
balance errors, the two options give similar results. In terms of the RMSE, the uniform option again
appears to have an edge over the non-uniform choice. For other configurations of layers, NLKP
and other parameters, the relative performances vary, and it is difficult to draw a general conclusion
concerning the best choice between the uniform and non-uniform distributions.

The objectives of our modeling included the development and implementation of a numerical
procedure for the effective simulation of flow through porous media under variably-saturated
conditions within complex geometries, using uniform and non-uniform distributions of lookup table
points for evaluating the soil hydraulic characteristics and the derivatives of these strongly nonlinear
relationships. This contribution describes the implementation, testing and evaluation of an effective
procedure for the simulation of variably-saturated flow in porous media with spatially-varying
properties, e.g., by taking many points in the sharp region of soil moisture curves. We have solved
accurately and with high computational efficiency some discriminating tests cases involving relatively
extreme conditions with regard to vertical drainage through a layered soil from initially-saturated
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conditions and sharp boundaries between the unsaturated and saturated conditions. The various
factors affecting the performance of the Picard and Newton schemes are illustrated and summarized
for two test cases and numerous combinations of grid size, time step size and number of lookup points.
We have shown that the uniform distribution is the better strategy to solve Richards’ equation for
drainage problems, while the non-uniform discretizations can be chosen for layered soil problems.
Further research will investigate 2D and 3D flow domains.
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