63 research outputs found

    A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity

    Get PDF
    The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron’s spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI) of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant R01-EB006385

    Motor Cortical Networks for Skilled Movements Have Dynamic Properties That Are Related to Accurate Reaching

    Get PDF
    Neurons in the Primary Motor Cortex (MI) are known to form functional ensembles with one another in order to produce voluntary movement. Neural network changes during skill learning are thought to be involved in improved fluency and accuracy of motor tasks. Unforced errors during skilled tasks provide an avenue to study network connections related to motor learning. In order to investigate network activity in MI, microwires were implanted in the MI of cats trained to perform a reaching task. Spike trains from eight groups of simultaneously recorded cells (95 neurons in total) were acquired. A point process generalized linear model (GLM) was developed to assess simultaneously recorded cells for functional connectivity during reaching attempts where unforced errors or no errors were made. Whilst the same groups of neurons were often functionally connected regardless of trial success, functional connectivity between neurons was significantly different at fine time scales when the outcome of task performance changed. Furthermore, connections were shown to be significantly more robust across multiple latencies during successful trials of task performance. The results of this study indicate that reach-related neurons in MI form dynamic spiking dependencies whose temporal features are highly sensitive to unforced movement errors.National Science Foundation (U.S.) (Grant DP1-OD003646)National Science Foundation (U.S.) (R01- DA015644)Australian Neuromuscular Research Institut

    Statistical Inference for Assessing Functional Connectivity of Neuronal Ensembles With Sparse Spiking Data

    Get PDF
    The ability to accurately infer functional connectivity between ensemble neurons using experimentally acquired spike train data is currently an important research objective in computational neuroscience. Point process generalized linear models and maximum likelihood estimation have been proposed as effective methods for the identification of spiking dependency between neurons. However, unfavorable experimental conditions occasionally results in insufficient data collection due to factors such as low neuronal firing rates or brief recording periods, and in these cases, the standard maximum likelihood estimate becomes unreliable. The present studies compares the performance of different statistical inference procedures when applied to the estimation of functional connectivity in neuronal assemblies with sparse spiking data. Four inference methods were compared: maximum likelihood estimation, penalized maximum likelihood estimation, using either l2 or l1 regularization, and hierarchical Bayesian estimation based on a variational Bayes algorithm. Algorithmic performances were compared using well-established goodness-of-fit measures in benchmark simulation studies, and the hierarchical Bayesian approach performed favorably when compared with the other algorithms, and this approach was then successfully applied to real spiking data recorded from the cat motor cortex. The identification of spiking dependencies in physiologically acquired data was encouraging, since their sparse nature would have previously precluded them from successful analysis using traditional methods.National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant Grant R01-DA015644)National Institutes of Health (U.S.) (Grant Grant R01-HL08450

    Transcranial direct current stimulation and sports performance

    Get PDF
    The application of transcranial direct current stimulation (tDCS) hasmoved fromthe laboratory to the wider community. This form of non-invasive brain stimulation has been shown in a number of controlled animal and human experiments, over nearly five decades, to modulate brain physiology, cognitive functions, and behavior. While its effects are variable across and within individuals, it is not unreasonable to state that tDCS harbors the potential to enhance executive and physical human performance. In a society increasingly driven to succeed with less effort, performance enhancement with an intervention that has an excellent safety record, is well tolerated, relatively inexpensive and readily available, is particularly appealing. Here, we offer a perspective on tDCS for the enhancement of physical performance in sport

    Motor Cortical Networks for Skilled Movements Have Dynamic Properties That Are Related to Accurate Reaching

    Get PDF
    Neurons in the Primary Motor Cortex (MI) are known to form functional ensembles with one another in order to produce voluntary movement. Neural network changes during skill learning are thought to be involved in improved fluency and accuracy of motor tasks. Unforced errors during skilled tasks provide an avenue to study network connections related to motor learning. In order to investigate network activity in MI, microwires were implanted in the MI of cats trained to perform a reaching task. Spike trains from eight groups of simultaneously recorded cells (95 neurons in total) were acquired. A point process generalized linear model (GLM) was developed to assess simultaneously recorded cells for functional connectivity during reaching attempts where unforced errors or no errors were made. Whilst the same groups of neurons were often functionally connected regardless of trial success, functional connectivity between neurons was significantly different at fine time scales when the outcome of task performance changed. Furthermore, connections were shown to be significantly more robust across multiple latencies during successful trials of task performance. The results of this study indicate that reach-related neurons in MI form dynamic spiking dependencies whose temporal features are highly sensitive to unforced movement errors

    Relationships between body composition, anthropometrics, and standard lipid panels in a normative population

    Get PDF
    IntroductionMore than one third of adults in the United States (US) meet the clinical criteria for a diagnosis of metabolic syndrome, but often diagnosis is challenging due to healthcare access, costs and discomfort with the process and invasiveness associated with a standard medical examination. Less invasive and more accessible approaches to collecting biometric data may have utility in identifying individuals at risk of diagnoses, such as metabolic syndrome or dyslipidemia diagnoses. Body composition is one such source of biometric data that can be non-invasively acquired in a home or community setting that may provide insight into an individual's propensity for a metabolic syndrome diagnosis. Here we investigate possible associations between body composition, anthropometrics and lipid panels in a normative population.MethodsHealthy participants visited the Lab100 clinic location at a hospital setting in New York City and engaged in a wellness visit led by a nurse practitioner. Blood was analyzed at point-of-care using the Abbott Piccolo Xpress portable diagnostic analyzer (Abbott Laboratories, IL, USA) and produced direct measures of total cholesterol (TC), high density lipoprotein (HDL-C), low density lipoprotein (LDL-C), very-low density lipoprotein (VLDL-C), and triglycerides (TG). Body composition and anthropometric data were collected using two separate pieces of equipment during the same visit (Fit3D and InBody570). Regression analysis was performed to evaluate associations between all variables, after adjusting for age, sex, race, AUDIT-C total score (alcohol use), and current smoking status.ResultsData from 199 participants were included in the analysis. After adjusting for variables, percentage body fat (%BF) and visceral fat levels were significantly associated with every laboratory lipid value, while waist-to-hip ratio also showed some significant associations. The strongest associations were detected between %BF and VLDL-C cholesterol levels (t = 4.53, p = 0.0001) and Triglyceride levels (t = 4.51, p = 0.0001).DiscussionThis initial, exploratory analysis shows early feasibility in using body composition and anthropometric data, that can easily be acquired in community settings, to identify people with dyslipidemia in a normative population

    Differential Involvement of Excitatory and Inhibitory Neurons of Cat Motor Cortex in Coincident Spike Activity Related to Behavioral Context

    Get PDF
    To assess temporal associations in spike activity between pairs of neurons in the primary motor cortex (MI) related to different behaviors, we compared the incidence of coincident spiking activity of task-related (TR) and non-task-related (NTR) neurons during a skilled motor task and sitting quietly in adult cats (Felis domestica). Chronically implanted microwires were used to record spike activity of MI neurons in four animals (two male and two female) trained to perform a skilled reaching task or sit quietly. Neurons were identified as TR if spike activity was modulated during the task (and NTR if not). Based on spike characteristics, they were also classified as either regular-spiking (RS, putatively excitatory) or fast-spiking (FS, putatively inhibitory) neurons. Temporal associations in the activities of simultaneously recorded neurons were evaluated using shuffle-corrected cross-correlograms. Pairs of NTR and TR neurons showed associations in their firing patterns over wide areas of MI (representing forelimb and hindlimb movements) during quiet sitting, more commonly involving RS neurons. During skilled task performance, however, significantly coincident firing was seen almost exclusively between TR neurons in a smaller part of MI (representing forelimb movements), involving mainly FS neurons. The findings of this study show evidence for widespread interactions in MI when the animal sits quietly, which changes to a more specific and restricted pattern of interactions during task performance. Different populations of excitatory and inhibitory neurons appear to be synchronized during skilled movement and quiet sitting.National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant R01-DA015644)Australian Neuromuscular Research Institut
    corecore