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Neurons in the Primary Motor Cortex (MI) are known to form functional ensembles with one another in order to produce
voluntary movement. Neural network changes during skill learning are thought to be involved in improved fluency and accuracy
of motor tasks. Unforced errors during skilled tasks provide an avenue to study network connections related to motor learning.
In order to investigate network activity in MI, microwires were implanted in the MI of cats trained to perform a reaching task.
Spike trains from eight groups of simultaneously recorded cells (95 neurons in total) were acquired. A point process generalized
linear model (GLM) was developed to assess simultaneously recorded cells for functional connectivity during reaching attempts
where unforced errors or no errors were made. Whilst the same groups of neurons were often functionally connected regardless
of trial success, functional connectivity between neurons was significantly different at fine time scales when the outcome of task
performance changed. Furthermore, connections were shown to be significantly more robust across multiple latencies during
successful trials of task performance. The results of this study indicate that reach-related neurons in MI form dynamic spiking
dependencies whose temporal features are highly sensitive to unforced movement errors.

1. Introduction

The primary motor cortex (MI) is a cortical region that
is responsible for encoding a large repertoire of voluntary
movements [1], and the specific role of MI neurons in the
production of reaching movements is currently a topic of
detailed investigation [2]. During the production of skilled
voluntary movements such as reaching, MI is thought to
organize into networks of task-related neurons that mediate
the production of the motor task. It has been proposed
that two or more neurons displaying statistically significant
covariation in their spiking patterns, sometimes referred to
as a “spiking association”, constitute evidence of network
activation [3]. Whilst the presence of significant spiking
associations between two neurons, does not necessarily

indicate a direct anatomical connection, it does suggest that
some form of direct, reciprocal, or common connection may
be influencing the firing of both neurons and is referred
to as a “functional connection” instead [3]. It is thought
that functional connections between MI neurons may allow
neurons sharing common involvement in a movement to link
together different elements of a task in order to produce the
desired movement [4–6]. The incidence of significant spiking
associations between reach-related neurons has been shown
to increase dramatically with the onset of the reaching task,
as compared with periods of postural maintenance [7–9].

There is emerging evidence to suggest that the prevalence
of spiking associations in MI may also be influenced by
the morphological properties of the cells involved. A recent
study has shown that during reaching, fast spiking (FS)
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neurons were significantly more likely to display task-related
spiking associations than regular spiking (RS) neurons in
MI [10]. Furthermore, inhibitory interneurons in MI have
been shown to interact with pyramidal cells in order to
appropriately shape their patterns of task-related firing
during reaching [11, 12]. This may suggest that the temporal
features of neural circuits in MI may influence pyramidal cell
output and, thus, task performance.

Unforced errors during a skilled reaching task may
be related to changes in neural activity and interactions
occurring in the motor cortex. Comparison of network
interactions during errors and those without provides an
avenue to study critical variables in neural interactions.
Here, we observe unforced errors occurring in a natural
(and unpredictable) manner during multiple trials of a
learned reaching task. Within a statistical framework based
on the point process generalized linear model (GLM), we
evaluate the differences in functional connectivity between
simultaneously recorded groups of MI neurons when the
outcome of task performance varies.

2. Materials and Methods

2.1. Recording Neuronal Data. The experiments were ap-
proved by the Animal Ethics Committee of the University
of Western Australia, and the NH&MRC (National Health
and Medical Research Council of Australia) guidelines for
the use of animal in experiments were followed throughout.
Methods of task training and performance, implantation
of microwires in the motor cortex, and recording spike
activity have been detailed in previous studies [7, 8].
Briefly, two adult cats were trained to perform reaching
and withdrawal movements using either forelimb to retrieve
food pellets placed between 2 upright Perspex barriers
spaced 4 cm apart. The animals were trained in task per-
formance for several months prior to the implantation of
the microwires, until the ratio of successful to unsuccessful
trials plateaued for at least one month. Only after this
level of stabilisation in performance was observed, were
the animals considered prepared for recording. The ratio
of successful to unsuccessful trials remained stable across
the duration of the experiments in each animal, further
confirming that motor learning was not taking place during
the experiments. Following the completion of behavioural
training, general anaesthesia was induced by intramuscular
injections of ketamine (6.6 mg/kg), xylazine (0.66 mg/kg),
and pentobarbitone (15 mg/kg) and maintained with half the
above doses of ketamine, xylazine, and pentobarbitone per
hour. PTFE-coated Platinum-Iridium microwires (0.025 mm
in diameter, California Wire Company, USA, impedance
0.5–1 MΩ at 1000 Hz) were implanted into the cortex to a
depth of about 1.5 mm in forelimb or hindlimb represen-
tations of MI (identified by intracortical microstimulation,
ICMS). A 32-channel amplifier (X100, PGA32 amplifier,
Multichannel Systems, Germany) and several 8-channel
preamplifiers (MPA8-1, Multichannel Systems, Germany)
were used to record neural activity from up to 24 microwires
simultaneously on a computer using MC card and MC

rack with a filtering frequency band of 200 Hz–10 kHz
(Multichannel Systems, Germany). Activity in each channel
was digitized at 25 kHz (sample interval 40 μs). An analogue
trigger was concurrently recorded with the neural data and
was used to separate periods of neural activity occurring
during task performance from periods of continuous raw
data acquisition. Analogue trigger signals occurred when the
animal’s reaching forelimb deformed a laser beam and were
used to isolate a 3-second epoch of neural data: starting 1.5
second before and finishing 1.5 second after each trigger
signal. The same software also allowed the identification
of spike activity in each channel using threshold detectors,
window discriminators, and spike waveform analysis. Frame-
by-frame video analysis was used to identify five different
stages of task performance within these 3-second epochs;
“background”, “premovement”, “reaching”, “withdraw”, and
“feed” (for a detailed description see [7]). After a set of
task trials the animal was trained to sit quietly for 3–5
minutes, and spike activity was also recorded during this
period (control period). During control periods no food was
expected or given, and animals were observed to be alert. The
time stamps of spike events in each channel, for each trial
were then exported to MATLAB (MathWorks, Natick, Mass,
USA).

In this study, each task trial was classified as either
“successful” or “unsuccessful” depending on whether or not
the animal was able to reach the food pellet and cover
it with its paw in one smoothly performed attempt, as
determined by video analysis. The reaching task that was
chosen for these experiments is known to have a high
degree of intrasubject reliability with regard to movement
kinematics and time taken for task performance [7, 13–15].
Similarly, the paw movement used to secure the food pellet
in this study is a highly refined skill in cats and has been
performed in a stereotyped manner on repetition [16, 17].
Our experimental paradigm utilized a Faraday cage (in order
to decrease electrical noise) for all recording sessions. The
animals adopted a comfortable posture on entering the
cage, and due to limited space, each set of reaching trials
was performed with the body in a similar initial posture
and orientation. The food pellet was placed in the same
starting position by the experimenters across each set of
trials, and the trajectory of the animal’s paw movements was
analyzed in the coronal and horizontal planes using frame-
by-frame video analysis in MATLAB (MathWorks, Natick,
Mass, USA), in order to monitor the kinematic properties of
“successful” and “unsuccessful” attempts at the reaching task.
The time stamps of spike activity during task performance
were exported to Neuroexplorer software (Nex Technologies,
USA), and Peri-Event Time Histograms (PETHs) were used
to calculate mean spiking rate during the different stages of
task performance in order to identify task-related neurons.
Standard ANOVA was used to determine if neural firing
rate was significantly modulated during the different stages
of task performance compared to “background” periods. In
order to be included in this study, isolated neurons were
required to show significant firing rate modulation during
one or more of the task stages, compared to the baseline
firing rate. Thus, only “task-related neurons” were included
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in this study, and they were recorded from both forelimb
and hindlimb regions of MI contralateral to the reaching
forelimb.

2.2. Histological Location and Classification of Neurons. A
description of the experimental data used in our study is
summarized in Table 1. In the present study, we have selected
simultaneous ensemble neuron recordings from 2 animals
and 8 independent datasets. The selection criterion ensured
that at least 9 neurons were simultaneously recorded in the
datasets that were used. All successful recording sites were
found to be located in lamina V of MI (cytoarchitectonic area
4γ) upon histological analysis [7].

In the past, different studies have successfully classified
regularspiking (RS) and fastspiking (FS) neurons based on
their baseline firing rates and spike durations [12, 18–21].
With some exceptions, RS and FS cells have been reliably
identified as pyramidal cells and inhibitory interneurons,
respectively [22–25]. In this study, “baseline firing rate” was
defined as the average firing rate of a neuron during control
periods (when the animal was sitting quietly) (Figures 1(a)
and 1(b)). Analysis of spike duration was performed using
the “Spike2” software package (CED, Cambridge, UK), and
spike duration was determined using the distance between
the two troughs of the action potential (Figure 1(c)), so
as to avoid inaccuracies that may arise from difficulties
in determining the point of initial deviation from the
baseline that has been previously reported [19]. When the
information about the baseline firing rate of each of the
neurons was added to its corresponding spike duration
information and plotted, two clear populations became
evident (Figure 1(d)). In the present study, RS neurons
were more commonly recorded (58/95) than FS neurons
(37/95). Based upon the selection criteria, RS neurons had
a baseline firing rate (mean ± SD: 8.5 ± 3.6 spikes/s) that
was significantly lower than (P < 0.001, rank-sum test) that
of the FS neurons (mean ± SD: 22.7 ± 9.6 spikes/s). More
recent studies in the primate have also discussed the presence
of another class of RS neuron that fires at high frequencies,
but still displays the spike duration characteristics of a typical
RS neuron [12]. Evidence of this type of cell was not seen in
this study, and this may be as a result of a smaller sample size
of neurons.

2.3. Point Process Generalized Linear Models. The cross-
correlogram and joint peristimulus time histogram (JPSTH)
are standard nonparametric methods for analyzing the
spiking associations between two neurons [26–28]. However,
these nonparametric tools have some drawbacks: first,
correlation-based analysis is limited to second-order spike
count statistics, which is inadequate for neural spike trains;
second, these methods are nonparametric and there is no
model validation or goodness-of-fit tests for the data; third,
these two methods cannot reveal changes of functional
connectivity at fast timescales; fourth, their ability to detect
inhibitory spiking associations is limited. To model and
quantify the neural interactions among ensemble MI neu-
rons in this study, we used the parametric tool of point

Table 1: Summary of experimental data in the present study.

Dataset
Number of trials
(succ/unsucc)

Number of
neurons
(RS/FS)

Forelimb/Hindlimb

Animal 1

1 42 (21/21) 13 (8/5) 7/6

2 50 (26/24) 15 (10/5) 9/6

3 31 (15/16) 15 (7/8) 10/5

4 35 (16/19) 11 (5/5) 6/4

Animal 2

5 37 (26/11) 10 (6/4) 6/4

6 60 (32/28) 10 (7/3) 7/3

7 42 (27/15) 9 (8/1) 6/3

8 35 (24/11) 12 (6/6) 6/6

process GLM [29, 30]. The point process GLM is a powerful
and established statistical tool for modelling extracellularly
recorded neural spiking activity, from either single units
or networks of isolated cells [30–33]. The main advantage
of using a parametric model to characterize neural spiking
data is to have a compact model representation of the
data and to have the ability to assess data (e.g., variability,
comparison between different groups) based on statistical
inference (e.g., maximum likelihood estimation, bootstrap
analysis) [34, 35]. In the present study, motivated from
previous analysis [31], we used the point process GLM to
identify the functional connectivity among ensemble neu-
rons during different experimental conditions (background
versus reaching, successful versus unsuccessful reaching
trials). The computational goal of the study was to make
a quantitative comparison between these data using the
presented GLM framework. Statistical tests were then used to
draw conclusions regarding the significance of our findings
for hypothesis testing based on the extracted model statistics
[35].

Let c = 1, . . . ,C denote the index of a multivariate
(C-dimensional) point process. For the cth point process
(which corresponds to cth neuronal firing pattern in the
C-dimensional neuronal population vector space), let Nc(t)
denote the counting process up to time t, and let dNc(t)
denote the indicator variable, which equals to 1 if there is
a spike at time t and 0 otherwise. Therefore, multiple neural
spike trains are characterized by a multivariate point process
dN1:C(0 : T). Mathematical background on point process
theory can be found in [36].

In modelling the neural spike train point process, the
conditional intensity function (CIF) is used to characterize the
instantaneous firing probability of a spiking event [34, 36]:

λc(t | Ht) = lim
Δ→ 0

Pr{Nc(t + Δ)−Nc(t) = 1 | Ht}
Δ

, (1)

where Ht denotes all of ensemble neuronal firing history
and any other information (sensory/motor covariates, field
potentials) up to time t. If the bin size Δ is sufficiently small
(in the present experiment we set Δ = 1 ms to assure there
is at most 1 spike in each bin), the product λc(t | Ht)Δ
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Figure 1: Classification of neurons. Two representative PETHs (bin size 100 ms) illustrating typical neural firing rates during control periods
in RS (a) and FS (b) neurons, note the lower mean firing rate in the RS neuron. Spike waveform analysis was also performed on these neurons
(c), and differences in spike duration between the averaged waveforms of isolated RS (black) and FS (red) neurons were easily identifiable.
When spike duration was plotted against baseline firing rate for all of the neurons recorded from both animals, two distinctly separate clusters
emerged (d). Based upon the previously established extracellular criteria, neurons were then classified as either RS (black) or FS (red).

approximately equates the probability of observing a spike
within the interval [t, t + Δ):

Pr{Nc(t + Δ)−Nc(t) = 1 | Ht} ≈ λc(t | Ht)Δ. (2)

Here for simplicity of joint likelihood analysis of ensem-
ble spike trains, we restrict ourselves to the cases where
∑C

c=1 dNc(t) ≤ 1 at any time t that is, no joint firing is allowed
in the continuous-time setting (in the case of discrete-time
setting, no joint firing is allowed at the finest temporal
scale under consideration). Let αc denote the unknown
parameters in the parametric form of function {λc}. In the
point process GLM framework, we express the CIF in the
following log-linear form [31]:

log λc(t) ≡ log λc(t | αc,Ht) = αcx(t) =
d∑

j=0

αcjxj(t)

= αc0 +
C∑

i=1

K∑

k=1

αci,kxi,t−k,

(3)

where dim(αc) = d + 1 (where d = C × K) denotes total
number of parameters in the augmented parameter vector
αc = {αc0,αci,k}, and x(t) = {x0, xi,t−k}, where x0 ≡ 1 and
xi,t−k denotes the spike count from cell i at the kth time-
lag history window. Here, exp(αc0) (unit: spikes/s) can be
interpreted as the baseline firing rate of neuron c. Depending
on the algebraic (positive or negative) sign of coefficient αci,k,
exp(αci,k) can be viewed as a “gain” factor (dimensionless,
>1 or <1) that influences the current firing probability of
neuron c from the spike count fired by another neuron i at
the previous kth time lag. We can further define the mean
excitatory-plus-inhibitory (E + I) ratio, averaged across K
lags, as

ratio = 1
K

K∑

k=1

C∑

c=1

C∑

i=1

#
{∣
∣
∣αci,k

∣
∣
∣� 0

}

C(C − 1)
, (4)

where� denotes “significantly greater than 0”.
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Let θ = {α1, . . . ,αC}, where dim(θ) = C(1 + d).
By assuming that conditional to spiking history of neu-
ronal populations, the ensemble neuronal spike trains
are mutually conditionally independent (Note that this is
not to be confused with assuming that the spike trains
or neurons are mutually statistically independent), the
continuous-time log-likelihood of all observed spike train
data {dNc(0 : T)}Cc=1 is written as [31, 34]

L(θ) =
C∑

c=1

L(αc)

=
C∑

c=1

{∫ T

0
−λc(t | αc)dt +

∫ T

0
log λc(t | αc)dNc(t)

}

.

(5)

By discretization of (5), we also obtain the discrete-time
log-likelihood function, in which the integration will be
replaced by a finite sum. From (5) it is clear that—L(θ) is
convex with respect to (w.r.t.) each λc as well as αc (because
of the log-linear form in (3)). In addition, the index c is
uncoupled from each other in the network log-likelihood
function, which implies that we can optimize the function
separately for each spike train observations dNc(0 : T) once
the parametric form of λc(t) is specified. For simplicity, we
will drop off the index c at λc and αc when no confusion
occurs.

2.4. Regularisation, Goodness of Fit, and Model Selection. To
address the “sparse spiking data” problem (which refers to
fitting certain cells with a low mean firing rate and small
number of trials), we use a penalized maximum likelihood
estimation method in order to avoid overfitting [37]. The
basic idea of regularization is to impose certain constraints or
priors on the parameters, which optimize the out-of-sample
performance. Specifically, we aim to maximize following
penalized log-likelihood function, denoted by Lp(α) [32]:

Lp(α) =
∫ T

0
−λ(t | α)dt +

∫ T

0
log λ(t | α)dN(t)− ραTQα,

(6)

where ρ > 0 denotes a regularization parameter, and
Q denotes a user-defined, positive semidefinite matrix.
Different choices of matrix Q lead to different regularization
solutions. As a special case, when Q = I (identity matrix), the
standard “ridge regression” is recovered. Further discussion
regarding the choice of a smoothing operator for matrix Q is
detailed in [37]. The regularization coefficient ρ was selected
by leave-one-out cross-validation, and the optimization can
be efficiently implemented by the conjugate gradient method
[37]. Since the optimization problem is convex, the final
estimate is globally optimal.

Upon convergence of the optimization algorithm (using
the criterion that the iteration stops when the log-likelihood
change in two subsequent updates is less than 10−4), the
goodness of fit of the point process model is evaluated
based on the Time-Rescaling Theorem and Kolmogorov-
Smirnov (KS) test [34]. In the model described in (3),

we have assumed that the number K (i.e., the number of
spiking history windows) is defined. In practice, this number
is unknown and needs to be determined using a model
selection procedure. The major issues faced with model
selection relate to the length of past spiking history that
is required and the choices of window size and window
number. In our experiment, we minimized the Bayesian
information criterion (BIC) to select the window number.
The BIC attempts to find a suboptimal tradeoff between the
model size and the log-likelihood:

BIC = −2L(α) + d log l, (7)

where d = dim(α) denotes the size of the unknown
parameters, and l denotes the total number of 0/1 binary
samples. BIC is derived by taking the second-order Taylor
expansion around the log posterior such that it avoids the
model and parameter integration during model selection
[38]. Window size is typically chosen in such a way that
the most recent windows use a small bin size, followed
by gradually increasing bin size (the choice of log scale of
window bin size roughly accounts for exponentially decaying
dependence on preceding spike counts). The maximum
length of spiking history was tested from 30 ms up to 120 ms
(since the reaching period only lasted about 700 ms), but in
many cases it was found that a shorter history length (e.g.,
40–60 ms) is sufficient for achieving a good KS statistic and
lower BIC, suggesting that a compact model is preferred in
model fitting.

For small or sparse spiking data sets, our simulation
studies have confirmed that the regularization imposed on
penalized maximum likelihood estimate often significantly
improves the goodness of fit of the model (Data not shown;
see [39]).

2.5. Identifying Functional Connectivity. Functional connec-
tivity between simultaneously recorded neurons shall be
defined in this paper as the statistically significant spiking
dependence of one cell on the other. Upon completing the
statistical inference, we obtain the penalized maximum
likelihood estimate (MLE) of parameter (denoted by α̂ of
the point process GLM. Let E[·] denote the mathematical
expectation operator, and let

Σ = −E
[

∂2L

∂α̂∂α̂T

]−1

≈
⎧
⎨

⎩

T/Δ∑

t=1

[

∇λt∇λtT Δ
λt
− ∇

2λt
λt

(dN(t)− λtΔ)

]⎫
⎬

⎭

−1
(8)

denote the negative Hessian matrix of the log-likelihood
estimated from the ensemble samples, where ∇λt = ∂λt/∂α̂
and ∇2λt = ∂2λt/∂α̂∂α̂T denotes the first- and second-
order partial derivatives of the CIF with respect to α̂ at a
discrete-time index t, respectively. From the property of MLE
it is known that Σ approximates the inverse of the Fisher
information matrix; in addition, under the regularity condi-
tion and large sample assumption, the MLE asymptotically
follows a multivariate Gaussian distribution [34, 38]: α̂ ∼
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(c)
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(d)

Figure 2: Kinematic analysis of task performance. Frame-by-frame analysis was performed using MATLAB in order to create two
dimensional trajectory traces for the reaching movement in the coronal and horizontal planes. The coordinates were derived by locating
the central point of the animal’s reaching paw at each separate frame of video footage (a). In (b), the results of trajectory analysis for dataset
4 are displayed for successful (top) and unsuccessful (middle) trials. The red arrow inside the successful trajectory trace indicates the direction
of the reaching motion, and the final trajectory trace (bottom) is the result of overlaying the successful and unsuccessful traces. Note the
clear similarity in the trajectory paths of the successful and unsuccessful trials, but the slight difference at the end of the reach phase of the
movement (circled) created by a second (or occasionally third) attempt at grasping the food pellet during unsuccessful trials. Finally, an
example of frame-by-frame analysis that was performed at the end of the reaching stage (as the food pellet was secured) that allowed for the
classification of trials as either unsuccessful (c) or successful (d). Note the slightly prolonged ending of the reach stage in “(c)” as the animal
needs to make another attempt to grasp the food pellet; while at similar frames in “(d)”, the commencement of the withdrawal stage had
already begun.

N(α,Σ), from which we can further derive the 95% Wald
confidence bounds of each element in α (i.e., α̂i ± 1.96Σ1/2

ii ).
Provided that any of the coefficients are significantly different
from zero, or their 95% Wald confidence intervals are not
overlapping with 0, we conclude that the estimated nonzero
coefficients are significant, and the “connection” between
two cells at a certain time-lag is either excitatory (positive) or
inhibitory (negative). Unlike cross-correlation, the pairwise
spiking dependence is directional and asymmetric in our
statistical models, and the spiking dependence between A→
B and B→A is not necessarily the same. Therefore, for C
ensemble neurons, there are possibly (C2 − C) directions
(excluding C self-connections) between all neuron pairs.

In summary, our point process GLM network analysis
consists of several steps: (i) model selection and model
determination based on the penalized maximum likelihood
estimation, plus model goodness-of-fit tests, (ii) determi-
nation of statistically significant nonzero GLM coefficients
(algebraic sign and total number) at different time lags,

(iii) repeat the analysis for different experimental conditions,
(iv) use of statistical tests to make quantitative comparison
between different experimental conditions.

3. Results

3.1. Evaluation of Errors in Reaching. Once fully trained,
the amount of time taken for the animals to perform
each stage of task performance remained rather stable over
several weeks to months before recording began, and this
phenomenon has been described in a previous study [7].
A reaching trial was defined as “unsuccessful” if the animal
was unable to close its paw over the offered food pellet at
the end of the “reach” stage of task performance in a single
smooth attempt. Unsuccessful attempts at task performance
were clearly evident on video analysis and typically required
no more than two extra attempts at securing the pellet.
Each rapid correction after an initial unsuccessful attempt
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involved abduction and retraction of the shoulder and flex-
ion of the elbow in order to lift the forelimb off the ground,
followed by an obligatory protraction and adduction of the
shoulder and extension of the elbow in order to repeat the
terminal period of the “reach” stage of task performance. A
trace of the animals’ paw trajectory during task performance
was created (Figures 2(a) and 2(b)) in order to assess any
major differences in limb trajectory that may have occurred
leading up to the error in securing the food pellet. No
major difference in the trajectory traces of successful and
unsuccessful trials could be detected in the trajectory traces
of either animal as they reached towards the food pellet.
However, the rapid movement corrections that occurred
following unsuccessful attempts at securing the pellet were
clearly distinguishable from the trajectory analysis (circled
region in Figure 2(b)). Corrections to the movement pattern
were implemented rather quickly, with another grasping
attempt completed within 40–60 ms of the preceding one
(Figures 2(c) and 2(d)); A statistically significant increase
in the length of time taken to perform the “reach” stage of
task performance was observed during unsuccessful trials in
both animals (P < 0.05, Student’s t-test; Table 2). A slight
decrease was also observed in the length of time taken to
perform the withdrawal stage of task performance during
unsuccessful trials in both animals, but this trend was not
seen to be significant. Animal 2 was also seen to have a much
higher rate of successful task performance than Animal 1, but
the recordings used in this study were taken over a period of
1 month, and the animals’ success rates remained unchanged
throughout.

3.2. Cortical Location of Successfully Recorded Neurons. Upon
histological analysis, successful recording sites were all
subsequently found to be located in the primary motor area
(cytoarchitectonic area 4γ; [7]) in the anterior or posterior
sigmoid gyri or in the rostral or caudal lip of the cruciate
sulcus and in the deeper layers of the cortex (Lamina
V). Many of the unsuccessfully implanted microwires were
subsequently found to be located in the white matter; no
spike activity could be recorded through these electrodes
and neither was any movement evoked by ICMS. We also
distinguished between recording sites in the rostral (r4γ)
and caudal (c4γ) subdivisions of the primary motor area,
separated by the cruciate sulcus, in our analysis [40–43]. In
the present study, 95 neurons were identified from successful
recording sites in r4γ (57/95) and c4γ (38/95). The majority
of these neurons were recorded from sites that evoked
forelimb (59/95) movements during ICMS sessions, and RS
(58/95) neurons were more commonly seen than FS (37/95)
neurons.

3.3. Fitting a Point Process GLM from Spiking Ensemble
Neurons. Model-based inference was used to characterise the
functional connectivity of ensemble neurons using the point
process GLM [29, 30, 44]. Based on our model selection
criterion, in Dataset-1 we selected 9 firing history windows
(up to preceding 40 ms) that include the spike counts in
the past 1∼3, 4∼6, 7∼9, 10∼12, 13∼15, 16∼20, 21∼25, 26∼

Table 2: Mean duration ± SE (ms) at each stage of task
performance across trials for two animals during successful and
unsuccessful trials.

Number of
trials

Duration (ms)

Premovement Reach Withdraw

Animal 1

Succ. 78 136 ± 11 317 ± 15 507 ± 14

Unsucc. 80 131 ± 13 372 ± 18 475 ± 17

Animal 2

Succ. 109 156 ± 16 606 ± 11 812 ± 24

Unsucc. 65 162 ± 12 682 ± 14 772 ± 21

30, and 31∼40 ms, respectively. In this dataset there are 13
× 9 spiking history windows (i.e., each cell contributes 9
preceding windows of spike counts), and dim(α) is 118 for
the point process GLM.

Assuming stationary model statistics across trials, unless
stated otherwise, all trials in each dataset were used to fit
the point process GLM. The selected history windows for the
remaining cases were given as follows.

Dataset 2: [1∼3, 4∼6, 7∼9, 10∼12, 13∼15, 16∼20,
21∼25, 26∼30, 31∼40, 41∼50].

Dataset 3:[1∼3, 4∼6, 7∼9, 10∼12, 13∼15, 16∼20,
21∼25, 26∼30, 31∼40].

Dataset 4: [1∼3, 4∼6, 7∼9, 10∼12, 13∼15, 16∼20,
21∼25, 26∼30, 31∼40].

Dataset 5: [1∼3, 4∼6, 7∼9, 10∼12, 13∼15, 16∼18,
19∼21, 22∼24, 25∼30, 31∼40].

Dataset 6: [1∼3, 4∼6, 7∼9, 10∼12, 13∼15, 16∼18,
19∼21, 22∼24, 25∼30, 31∼40].

Dataset 7: [1∼3, 4∼6, 7∼9, 10∼12, 13∼15, 16∼20,
21∼25, 26∼30, 31∼40].

Dataset 8: [1∼3, 4∼6, 7∼9, 10∼12, 13∼15, 16∼20,
21∼25, 26∼30, 31∼40].

In each case, an efficient optimisation procedure was
applied for inferring the parameters of point process GLM,
followed by goodness of fit assessment. Amongst a total
of 95 × 4 = 380 model fittings (95 cells, 4 conditions:
background/reaching, succ/unsucc), nearly 73% of cases fit
very well with our point process GLM using a network
likelihood model; that is, their KS plots fell within the 95%
confidence intervals. When the confidence bound criterion
was relaxed to 90%, the ratio of significance increases to
92%. This suggests that the point process GLM that was
selected for use in this analysis characterized our neuronal
spike train data rather well. For each cell, the size of unknown
parameters in the network likelihood model varies from
118 to 151, which points at a relatively compact parametric
model. Cells with less satisfactory fitting results may be as
a result of a number of factors, such as: (i) the model is
not sufficient to capture a long-range spiking dependence
due to its compact size, or (ii) if the target cell’s spiking
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Table 3: The mean (E + I) connectivity ratio and the number of inferred significant neuronal associations (including self-interaction) in
three cell-type subcategories in 8 datasets. The first two numbers in each column show the prevalence of connected neuronal pairs as a
fraction of the total number of possible connections during unsuccessful and successful (in brackets) trials, respectively. The numbers in
square brackets in the last 3 columns indicate the numbers of all possible pairwise neuronal associations (including self-interaction) for
different data sets. Two neurons are said to interact if their pairwise connection coefficients at any time lag are significantly different from
0. Note that in order to compute the fraction of significant neuronal interactions in the three cell-pair subcategories, we need to divide the
listed raw numbers by the respective numbers in the square brackets in each group.

Dataset Condition Mean (E + I) ratio Ratio of significant neuronal interactions

RS-RS RS-FS FS-FS

1 Background 0.08 (0.07) 0.3 (0.28) [64] 0.38 (0.35) [80] 0.88 (0.88) [25]

reaching 0.09 (0.12) 0.61 (0.63) 0.4 (0.41) 0.96 (1)

2 Background 0.45 (0.46) 0.27 (0.29) [100] 0.24 (0.24) [100] 0.6 (0.64) [25]

reaching 0.49 (0.61) 0.6 (0.64) 0.24 (0.27) 0.68 (0.68)

3 Background 0.26 (0.24) 0.02 (0.02) [49] 0.05 (0.08) [112] 0.25 (0.3) [64]

reaching 0.29 (0.47) 0.31 (0.35) 0.2 (0.2) 0.47 (0.42)

4 Background 0.52 (0.49) 0.32 (0.24) [25] 0.24 (0.2) [50] 0.8 (0.76) [25]

reaching 0.59 (0.72) 0.6 (0.64) 0.44 (0.44) 1 (1)

5 Background 0.56 (0.74) 0.19 (0.44) [36] 0.29 (0.44) [48] 0.81 (1) [16]

reaching 0.62 (0.79) 0.36 (0.64) 0.25 (0.44) 0.81 (0.94)

6 Background 0.48 (0.53) 0.18 (0.2) [49] 0.19 (0.24) [42] 0.78 (0.89) [9]

reaching 0.56 (0.86) 0.77 (0.77) 0.5 (0.5) 1 (1)

7 Background 0.14 (0.27) 0.03 (0.05) [64] 0.13 (0.31) [16] 1 (1) [1]

reaching 0.19 (0.48) 0.2 (0.3) 0.19 (0.25) 1 (1)

8 Background 0.14 (0.27) 0 (0.08) [36] 0.08 (0.18) [72] 0.69 (0.92) [36]

reaching 0.16 (0.26) 0.03 (0.08) 0.1 (0.25) 0.81 (0.89)

activity is being too heavily influenced by uncontrollable
factors such as unrecorded neuronal spiking activity or
strong firing modulation in response to motor variables,
the model may not be able to predict the cell’s spiking as
accurately. The latter would appear most likely, since an
experimental extension of the spiking history length did not
result in any significant improvement in model fitting. Once
model goodness-of-fit was established, we may infer and
compare statistics extracted from the statistical model [44,
45]. Extracted model-based statistics, once being identified
statistically significant, will then be used to characterize
the difference between distinct experimental conditions
(background versus reaching, succ versus unsucc; Table 3).

3.4. Spiking Associations Specific to Different Cell Group
Pairings. In order to examine the incidence of functional
connectivity between different cell types during differ-
ent behavioural conditions, a classification according to
neuronal subtype (RS-FS, RS-RS, FS-FS) was made, and
incidence of spiking associations within these three groups
was computed. Two cells are considered to have a directional
interaction if one or more of the GLM coefficients associated
with the selected history windows return a statistically
significant nonzero result. To make a fair comparison of
the incidence of neuronal associations between the different
cell pairings, the raw number of significant associations was
divided by the number of all possible pairings that were
tested for evidence of association to obtain the ratio of
neuronal interactions (summarised in Table 3). Analysis of

the eight datasets showed that during background periods,
spiking associations between FS-FS pairs were the most
common, followed by RS-FS and RS-RS pairs. During task
periods, spiking associations were still most commonly seen
between FS-FS pairs however, RS-RS became the next most
commonly seen, followed by RS-FS pairs.

To quantify and compare these differences between suc-
cessful and unsuccessful trials, we conducted the paired rank-
sum test. It was found that during the reaching period, the
median fraction values between RS-RS and FS-FS (unsucc:
P < 0.001; succ: P < 0.006), RS-FS and FS-FS (unsucc:
P < 0.001; succ: P < 0.006), and RS-RS and RS-FS (unsucc:
P < 0.006; succ: P < 0.006) cell pairings, all reached statistical
significance. Thus, while significant differences were seen in
the prevalence of spiking associations between different cell
groups, these findings were not different when successful and
unsuccessful trials were compared.

Spiking associations were more commonly observed
during task periods (compared with background periods)
in all three of the cell pairings investigated (RS-FS, RS-
RS, FS-FS), a finding that was consistent regardless of trial
success (Table 3). Furthermore, when the animal’s behaviour
changed from postural maintenance (background) to task
performance, the incidence of significant spiking associa-
tions detected in RS-RS, RS-FS, and FS-FS cell pairings
increased by 356%, 53%, and 12%, respectively during suc-
cessful trials, and during unsuccessful trials, these numbers
were 346%, 71%, and 22%, respectively. However, these
numbers shall be treated carefully since there is a high
degree of variability among different data sets. These findings



Neural Plasticity 9

indicate that the onset of a voluntary movement such as
target reaching is accompanied by a dramatic increase in the
prevalence of neuronal interactions between pairs of putative
excitatory neurons. However, despite this proportionately
large increase in the number of RS-RS associations, spiking
relationships between FS neurons still remain the most
commonly seen during reaching.

3.5. Factors Affecting the Incidence of Neuronal Interactions.
A global quantitative assessment of the results reported
in Table 3 was conducted, considering multiple factors all
together. We used a multiway ANOVA to test whether the
means of several groups are equal. The incidence of func-
tional connectivity between different cell groups (RS-RS, RS-
FS, FS-FS), task outcomes (successful versus unsuccessful),
and periods (background versus reaching) were considered
as three potential factors (denoted by g1, g2, g3, resp.), and
those factors were tested (together as well as individually) to
see if they reached significance across all datasets. A random-
effects three-factor ANOVA revealed that only two factors
(cell group and period) reach statistical significance, and the
result is summarized in Table 4.

It should be pointed out that although the skill factor
did not reach significance in the ANOVA test, it did not rule
out the possibility that only a subset of ensemble neurons
were responsible for causing errors in the grasping motion.
Inclusion of all neurons might make it difficult to reveal the
“significance” of performance-related encoding specific to
certain cells.

3.6. Overall Incidence and Strength of Significant Spiking
Associations. Based on the selected model, we can compute
the mean connectivity ratio at different time lags to char-
acterize the time-dependent spiking associations detected
amongst simultaneously recorded neurons. This ratio was
defined as the total number of significant nonzero (positive
or negative) coefficients detected against the total number of
neuronal pairs assessed across all finite discrete time lags and
normalised by the number of time lags and was called the
mean (E + I) connectivity ratio (4). In the previous section,
the fraction of detected neuronal interactions was reported
across cell groups and behavioural conditions. However,
computation of the mean (E+I) connectivity ratio allows for
further insight into the nature of the detected connectivity, as
it provides quantitative information about how the strength
and incidence of the significant nonzero coefficients vary
across multiple time windows.

The mean (E+I) connectivity ratios in the “background”
and “reaching” epochs are summarized for all datasets in
Table 3 (third column), and the ratio values vary between
0.07 and 0.86 under different conditions. The mean (E + I)
connectivity ratios were seen to increase significantly during
successful (0.54 ± 0.26) compared with unsuccessful (0.37 ±
0.21) trials during task periods, indicating that the incidence
of overall spiking association was affected by the success of
task performance (P < 0.001, paired rank-sum test). During
successful trials, the mean (E+I) connectivity ratio increased

Table 4: Summary of multiway ANOVA.

Source Sum Sq. d.f. Mean Sq. F Prob > F

Cell group (g1) 3.7087 2 1.8543 54.29 1e − 8

Task outcome (g2) 0.0506 1 0.0506 1.48 0.2270

Period (g3) 0.5797 1 0.5797 16.97 1e − 4

Error 2.6981 79 0.0342

Total 7.0371 83

significantly during task performance (0.54 ± 0.26) com-
pared with the background period (0.38 ± 0.21) (P <
0.001, paired rank sum test). Interestingly, this was not seen
during unsuccessful trials, where no significant difference
could be detected between the mean (E + I) connectivity
ratio during background (0.33 ± 0.19) and task performance
(0.37 ± 0.21). Therefore, while we have shown that the onset
of reaching was accompanied with a significant increase
in spiking associations between simultaneously recorded
neurons during both successful and unsuccessful trials, these
data suggest that the spiking associations detected during
unsuccessful trials are less robust than those seen during
successful trials.

Figure 3 allows for the separate observation of excitatory
and inhibitory connections as they occur over the different
time history windows during background and reaching
periods. This particular study uses a novel method of net-
work analysis that allows for the examination of inhibitory
spiking associations with unprecedented accuracy. Whilst
inhibitory connections are slightly less common than exci-
tatory connections, there is a consistent ratio of excitatory
to inhibitory functional connectivity. In order to measure
this, an excitatory-to-inhibitory (E : I) ratio was constructed,
which measured the total number of excitatory connections,
divided by the number of inhibitory connections detected
in each dataset during both the background and reaching
conditions. This differs from the mean E + I connectivity
ratio, which measures the average number of excitatory
and inhibitory connections during these conditions. Inter-
estingly, although we showed a significant increase in the
mean E + I connectivity ratio between reaching compared
with background periods, the E : I ratio remains constant
throughout background (1.11 ± 0.22) and reaching (1.11 ±
0.11). This suggests that although there is significant increase
in the prevalence of functional connections with the onset
of reaching, the balance of excitation and inhibition remains
the same. Similarly, the E : I ratio remained stable during
successful (1.11 ± 0.11) and unsuccessful trials (1.1 ±
0.19) despite a significant difference in their mean E + I
connectivity ratio, suggesting that this specific E : I ratio
may be a fairly robust ratio that is observed during normal
cortical function.

3.7. Dynamic Changes in Spiking Associations during Errors
in Reaching. When all datasets used in this study were con-
sidered, the median values measuring the incidence of sig-
nificant spiking associations between pairs of simultaneously
recorded neurons did not reach statistical significance (P >
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Figure 3: Illustrations of excitatory (red, top row) and inhibitory (blue, bottom row) functional connectivity among 15 ensemble MI
neurons (Dataset-3) recorded from the left cerebral hemisphere of one of the animals during the background (a) and reaching (b) stages
of successful task trials. Circles and squares represent the RS and FS cells, respectively. Uni- or bidirectional arrow indicates directional
statistical dependence between cells, with solid/dashed lines representing excitatory/inhibitory connections. The numbers above each panel
of connectivity maps indicate the different spiking history windows that were selected to detect the associations. Note the significant increase
in both inhibitory and excitatory spiking associations that occurred during reaching when compared with background, and different pairs
of neurons are involved in functional interactions during different behavioural conditions.

0.05, rank-sum test) when a comparison was made between
the successful and unsuccessful behavioural conditions.

However, this method also makes an assessment of
how influential different, brief windows (3–10 ms) of the
trigger neuron’s firing history are on the firing of the target
neuron. This allows for an observation of the dynamics of
functional connections between two neurons at different
latencies. When comparing the spiking associations between
pairs of neurons during successful and unsuccessful task
trials, it was observed that the spiking dependence that was
inferred between the trigger neuron and the target neuron
was quite different during different history windows, in
terms of either being statistically significant nonzero or their
excitatory/inhibitory effects. In some cases, the coefficient
trace over history time lags would be completely reversed
between trials of differing success (e.g., see the coefficient
traces of two representative pairs of neurons illustrated
in Figure 4(a)). The difference of their firing patterns is
deemed to be statistically significant, as indicated by the
95% confidence bounds in the estimates). This suggests that
the timing and dynamics of (some, if not all) neuronal
interactions between task-related neurons have a role in
leading to successful task performance. This phenomenon
was observed in all subtype pairings and across all datasets.
To test against the null hypotheses that the observed

differences in spiking associations occurred due to overfitting
of our model, or were simply observed by chance, we also
carried out two follow-up procedures as sanity checks for
our data. To test for overfitting, we randomly split the
number of trials used in the analysis into half for both
the successful and unsuccessful groups and recomputed
the GLM coefficients. The procedure was repeated for 20
Monte Carlo runs, and the mean (and standard error
of the mean, SEM) coefficients are shown in Figure 4(b).
Comparing Figures 4(a) and 4(b), a high degree of positive
correlation of the estimate can be observed, implying that
model overfitting was not an issue in our analysis. In order
to confirm that the observed differences did not occur due
to chance, we randomly shuffled the trial IDs amongst the
succ/unsucc groups (so that each group contained equal
numbers of both successful and unsuccessful trials) and
repeated the same analysis. The mean/SEM estimates of the
coefficients are shown in Figure 4(c). Comparing Figures
4(a) and 4(c), it is obvious that the coefficients estimated
from shuffled trials are not significantly different from zero,
and the results with mixed task performance trials appear
almost identical (Figure 4(c), between the upper and lower
panels). This confirms that the differences observed in the
spiking associations between the neuron pairs showed in
Figure 4(a) did not occur by chance and were in fact related
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Figure 4: Continued.
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Figure 4: Two representative examples of estimated GLM coefficients {αi,k} (shown in vertical axis, dimensionless) of cell pair interactions
between unsuccessful and successful trials during reaching movement. Positive/negative coefficients represent excitatory/inhibitory effects.
Notation c → d denotes the directional spiking dependence from trigger cell c to target cell d. The shaded areas around the curve indicate
the 95% confidence intervals of the estimated coefficients. Only those coefficients whose 95% confidence intervals do not overlap with
zero are identified as significant connections. In the two examples displayed (Dataset-1), the cells numbered 3, 8, and 9 were classified as
two FS neurons and a RS neuron, respectively. (a) Estimated GLM coefficients using complete (21 + 21) trials. (b) Estimated coefficients
averaged from 20 Monte Carlo runs using only half of (11 + 11) trials (shaded bars show the standard error of the mean). (c) Estimated GLM
coefficients averaged from 100 Monte Carlo runs using shuffled successful/unsuccessful trial ID.

to the differences in the outcome of task performance. These
findings indicate that while the general incidence of spiking
associations between neuronal pairs may remain stable, more
finely tuned temporal features of these associations may
affect the outcome of task performance. At present, we must
rely on visual inspection in order to identify differences
in coefficient traces. Thus, it remains difficult (without
subjective judgement) to quantify the degree to which two
coefficient traces are different. For this reason, we do not yet
have a summary statistic for the datasets analysed here.

3.8. Changes in Spiking Associations Were Not Related to
Changes in Single Unit Activity. Only task-related neurons
were included in these analyses, and although it is beyond

the scope of this particular study to discuss single unit
activity modulation during task performance in detail, it
is important to point out that there was no observable
relationship between single unit activity and the variation
seen in the spiking associations described in this study. Single
neuron spiking modulation during task performance was
studied during successful and unsuccessful task trials. In
approximately 40% of cells (data not shown here), there was
no significant difference in the timing or frequency of spiking
rate modulation when successful trials were compared with
unsuccessful trials. The remainder of cells showed differences
between the two behavioural conditions that varied from
slight temporal variances, to clear differences in spiking
frequency. However, the observed differences in spiking
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associations were seen in similar proportions regardless of
whether or not neurons showed observable differences in
single unit responses between successful and unsuccessful
trials.

4. Discussion

4.1. What Do Spiking Associations Tell Us? This study utilized
a point process GLM method in order to infer functional
connectivity between cells that displayed significant levels
of covariation in their spiking patterns. However, it is
important to establish that in this particular study, only
cells recorded from different microwires were considered for
network analysis. Given the distance between recording sites
(>1 mm), it is unlikely that detected functional connections
were a result of direct anatomical connections. Further
evidence to support this inference is the fact that associations
detected between RS-RS pairs were often inhibitory and
FS-FS pairings were often excitatory. Therefore the most
probable explanation for these spiking associations is that
functionally connected cells are receiving input from a
common source in order to drive their discharge, a concept
that has been proposed by studies in the past [5–7]. It has
been well established that MI receives strong inputs from
many cortical [46] and subcortical [47] sources that are
involved in the planning and preparation of motor tasks. It
is possible that inputs from these regions are responsible for
the rapid increase in spiking associations that we see during
reaching. Simultaneous recordings of other cortical motor
areas with MI would be a worthwhile future experiment in
order to confirm this hypothesis.

4.2. More Spiking Associations Were Detected during Reach-
ing Than Background. The majority of studies that iden-
tify covariation in spiking patterns amongst MI neurons
exclusively investigate periods of task performance, while
fewer studies have considered network properties during
premovement periods [48]. The current study investigated
the prevalence and nature of spiking associations that
occurred both during the task and the period of time
prior to movement onset (background period) in order to
evaluate whether differences in movement accuracy were
predictable in interactions occurring prior to movement
onset. Spiking associations between neurons during task
performance were more common than during background
periods, as has been described in previous studies [7, 9].
The observed increases in spiking associations during task
performance were seen in all cell subtype pairings, but most
markedly in RS-RS pairs, suggesting that a larger proportion
of pyramidal cells establish spiking associations with one
another during the performance of a skilled movement.
Despite the rapid increase in RS-RS associations seen during
task performance, the findings of this study indicate that
in MI, FS neurons were significantly more likely than RS
neurons to establish spiking associations with other neurons.
Increased prevalence of coincident spiking activity amongst
FS neurons has been previously observed in both intracellu-
lar [49, 50] and extracellular [19, 51] studies in nonmotor

areas of the cortex. During both background and reaching
periods FS-FS couplings were proportionately the most
commonly seen, followed by RS-FS and RS-RS, a finding
similar to what has been described in layer V neurons in the
prefrontal and somatosensory cortices [18, 52]. Interestingly,
the outcome of task performance did not significantly affect
the prevalence of detected spiking associations in either
background or reaching periods, suggesting that regardless of
trial success, similar networks of neurons are being recruited
during performance of the reaching task. However, a novel
aspect of our methodology allowed for the computation
of the mean (E + I) connectivity ratio. The results of this
calculation indicated that during successful trials, detected
functional connections were significantly stronger and more
consistent across multiple history windows than during
unsuccessful trials. This suggests that the performance of
inaccurate movement patterns may be a result of less robust
transmission of the input that is reaching and driving the
activities of MI neurons.

4.3. Balance of Excitation and Inhibition in MI. Previous
studies have shown significant increases in the prevalence
of spiking associations between background periods and
periods of task performance [7, 9]. However, this is the
first study to show that this finding is not limited to
excitatory associations, but also involves a proportionately
similar increase in inhibitory functional connections. Corti-
cal neurons are known to receive a specific ratio of excitatory
and inhibitory inputs in order to control their discharge
frequency and timing [53]. This balance of inputs can be
disrupted by a number of factors such as induction of
anesthesia [54] or pathology [55, 56]. Since the methods used
in this study allowed for the accurate detection of inhibitory
connections as well as excitatory connections, we found that
an animal shifting its behaviour from postural maintenance
to target reaching is not a sufficient stimulus to disrupt the
balance of excitatory to inhibitory interactions influencing
the activities of MI neurons.

4.4. Trial Success Affects the Timing of Detected Spiking Asso-
ciations. When a significant spiking association is detected
between simultaneously recorded cells, this does not nec-
essarily infer coincident spiking. Rather, the firing of a
reference neuron may influence the firing of a target neuron
many milliseconds later, introducing the concept of spiking
associations at different latencies. Studies have shown that
when neurons develop spiking associations, any latency in
the detected association will remain stable to millisecond
precision across many presentations of the same stimulus
[57]. The present study shows that spiking associations
occurring between the same neurons have significant differ-
ences in their temporal features depending on whether task
performance is successful or unsuccessful. Thus, movement
errors may occur due to abnormal neural interactions within
MI which are probably related to abnormal inputs to MI
neurons from other cortical and subcortical regions.
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5. Conclusions

This is the first study to investigate the effect of unforced
movement errors made during performance of a reaching
task on the nature of functional connectivity between
multiple neurons located in MI. The major findings of
this work infer that many network interactions do not
change between motor behaviours (e.g. ratios of excitatory
and inhibitory interaction). However, errors in reaching
are associated with significant disruption of the strength,
duration, and timing of functional connections. This has
implications for our understanding of the dynamic nature of
the networks involved in motor learning in MI.
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