
Statistical Inference for Assessing Functional Connectivity of
Neuronal Ensembles with Sparse Spiking Data

Zhe Chen[Senior Member, IEEE],
Neuroscience Statistics Research Laboratory, Massachusetts General Hospital, Harvard Medical
School, Boston, MA 02114 USA, and also with the Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA

David F. Putrino,
Neuroscience Statistics Research Laboratory, Massachusetts General Hospital, Harvard Medical
School, Boston, MA 02114 USA, and also with the Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA

Soumya Ghosh,
Centre for Neuromuscular & Neurological Disorders, University of Western Australia, QEII
Medical Centre, Nedlands, Western Australia, Australia

Riccardo Barbieri[Senior Member, IEEE], and
Neuroscience Statistics Research Laboratory, Massachusetts General Hospital, Harvard Medical
School, Boston, MA 02114 USA, and also with Massachusetts Institute of Technology,
Cambridge, MA 02139 USA

Emery N. Brown[Fellow, IEEE]
Neuroscience Statistics Research Laboratory, Massachusetts General Hospital, Harvard Medical
School, Boston, MA 02114 USA, and also with the Harvard-MIT Division of Health Science and
Technology, and the Department of Brain and Cognitive Sciences, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA
Zhe Chen: zhechen@neurostat.mit.edu; David F. Putrino: trinod01@neurostat.mit.edu; Soumya Ghosh:
sghosh@cyllene.uwa.edu.au; Riccardo Barbieri: barbieri@neurostat.mit.edu; Emery N. Brown: enb@neurostat.mit.edu

Abstract
The ability to accurately infer functional connectivity between ensemble neurons using
experimentally acquired spike train data is currently an important research objective in
computational neuroscience. Point process generalized linear models and maximum likelihood
estimation have been proposed as effective methods for the identification of spiking dependency
between neurons. However, unfavorable experimental conditions occasionally results in
insufficient data collection due to factors such as low neuronal firing rates or brief recording
periods, and in these cases, the standard maximum likelihood estimate becomes unreliable. The
present studies compares the performance of different statistical inference procedures when
applied to the estimation of functional connectivity in neuronal assemblies with sparse spiking
data. Four inference methods were compared: maximum likelihood estimation, penalized
maximum likelihood estimation, using either ℓ2 or ℓ1 regularization, and hierarchical Bayesian
estimation based on a variational Bayes algorithm. Algorithmic performances were compared
using well-established goodness-of-fit measures in benchmark simulation studies, and the
hierarchical Bayesian approach performed favorably when compared with the other algorithms,
and this approach was then successfully applied to real spiking data recorded from the cat motor
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cortex. The identification of spiking dependencies in physiologically acquired data was
encouraging, since their sparse nature would have previously precluded them from successful
analysis using traditional methods.

Index Terms
Functional connectivity; neuronal interactions; point process generalized linear model; maximum
likelihood estimate (MLE); penalized maximum likelihood; ℓ2 regularization; ℓ1 regularization;
conjugate gradient; interior-point method; variational Bayes; time-rescaling theorem

I. Introduction
Identifying the functional connectivity of a neuronal system using simultaneously recorded
neural spike trains has provided valuable implications for understanding the system from a
statistical perspective [6], [25]. Statistical modeling of neuronal data has been used for
establishing statistical associations or causality between neurons, finding spatiotemporal
correlations, or studying the functional connectivity in neuronal networks [10], [3], [50],
[32], [31], [41], [14]. This analysis has many functional applications such as neural
decoding, and assisting attempts to understand the collective dynamics of coordinated
spiking cortical networks [49]. A statistical tool for analyzing multiple spike trains is the
theory of random point processes. Statistical inference for point process observations often
starts with a certain class of statistical (parametric or nonparametric) model, followed by
parameter estimation using a statistical (either maximum likelihood or Bayesian) inference
procedure [42], [5], [47]. To date, a number of statistical tools and models have been used to
identify functional connectivity between ensemble neurons. The cross-correlogram and joint
peri-stimulus time histogram (JPSTH) are standard (and possibly simplest) nonparametric
methods for analyzing the interactions between pairwise neurons [35], [20], [1]. However,
these tools have serious drawbacks: correlation-based analysis is limited to second-order
spike count statistics, which is inadequate for neuronal spike trains. Further, these methods
are nonparametric and there is no model validation or goodness-of-fit tests for the data.
Recently, point process generalized linear models (GLMs) have been widely used for
characterizing functional (spiking) dependence among ensemble neurons [10], [32], [47].
Specifically, the spiking probability of a particular neuron may be modeled as a function of
the spiking history of concurrently recorded ensemble neurons (and possibly, a function of
the input of the other stimuli as well), and the corresponding parameters of the point process
GLM are inferred by maximum likelihood estimation. Bayesian inference has also been
recently proposed for GLM inference on neural spike train data [36], [39], [48], [21], [42],
[9]. Various approximation procedures have been developed, based on either Laplace
approximation, expectation propagation (EP), Markov chain Monte Carlo (MCMC)
sampling, or variational approximation.

To date, spike train modeling based upon the point process GLM has been used as a
statistical tool in an effective manner to infer functional connections between groups of
simultaneously recorded neurons [32]. However, physiological experiments that aim to
record neural activity from awake, behaving animals are technically difficult to perform, and
at times, the quantities of data that are collected during recording periods can be less than
ideal. In addition, neurons that are recorded from animals or human subjects in anesthetized
state often fire at very low spiking rates. Most traditional methods that analyze pairwise
relationships between neurons simply cannot be used to reliably infer interactions when
neural firing rates are low, or the number of trials of a behavioral task that is being studied
are low. This presents a rather important problem in the field of neuroscience, as many sets
of carefully acquired experimental data are then considered unusable for analysis (i.e.,
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because insufficient trials of a difficult behavioral task were acquired, or recorded neurons
are firing at an extremely low rate). Theoretically, the more recently developed model-based
methods have the ability to reliably perform this analysis, but their effectiveness at being
applied to this problem has not been examined. The present paper evaluates the ability of
two different approaches to address this problem based on the point process GLM
framework: the first one is penalized maximum likelihood estimation that uses ℓ2 or ℓ1
regularization, which aims to improve the generalization of the model while reducing the
variance of the estimate; the second is hierarchical Bayesian estimation, which uses an
efficient variational approximation technique that allows deterministic inference (without
resorting to random MCMC sampling). The statistical algorithms under investigation are all
capable of handling large-scale problems, but the present paper focuses on relatively small-
scale data sets. The current paper focuses on the investigation of different inference
algorithms rather than on different modeling paradigms for characterizing functional
connectivity. It is worth noting that, in addition to the point process GLMs, other statistical
models such as the maximum entropy model [38], [40] and the dynamical Bayesian network
[15], are also useful complementary tools for inferring the spiking dependence among
ensemble neurons.

II. Point Process Generalized Linear Model
A point process is a stochastic process with 0 and 1 observations [5], [12]. Let c = 1, ···, C
denote the index of a multivariate (C-dimensional) point process. For the cth point process,
let  denote the observed response variables during a (discretized) time
interval [1, T], where  is an indicator variable that equals to 1 if there is a spike at time t
and 0 otherwise. Therefore, multiple neural spike train data are completely characterized by

a multivariate point process . Mathematical backgrounds on the point process theory
can be found in [12], [7].

A. Exponential Family and Generalized Linear Models
In the framework of GLM [29], we assume that the observations {y1:T} follow an
exponential family distribution with the form:

(1)

where θ denotes the canonical parameter, and c(yt) is a normalizing constant. Assume that

b(θt) is twice differentiable, then  (where ⊤
denotes the transpose). Moreover, the mean μt is related to the linear predictor via a link
function g:

(2)

where xt denotes the input covariate at time t. Using a canonical link function, the natural
parameter relates to the linear predictor by θt = ηt = βxt,Table I lists two probability
distributions of exponential family (in a canonical form) for modeling point process data. In
the case of Bernoulli distribution, the link function is a logit function ( ); in
the case of Poisson distribution, the link function is a log function. Consequently, the point
process GLMs based on either logistic regression or Poisson regression can be used to
model neural spike trains [47]. The difference between these two models is that in Poisson
regression, the generalized “rate” (or conditional intensity function) λ is estimated, whereas
in logistic regression, the spiking probability π is directly estimated. When the bin size Δ of
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the spike trains is sufficiently small, we can approximate π = λΔ and the difference of using
these two models is small. In the present paper, we use the (Binomial) logistic regression
GLM for the illustration purpose.

To model the spike train point process data, we use the following logistic regression model
with the logit link function.1 Specifically, let c be the index of target neuron, and let i = 1, …
C be the indices of trigger neurons. The Bernoulli (binomial) logistic regression GLM is
written as:

(3)

where dim(βc) = d + 1 (where d = C × K) denotes total number of parameters in the
augmented parameter vector , and x(t) = {x0, xi,t−k}. Here, x0 ≡ 1 and xi,t−k
denotes the spike count from neuron i at the kth time-lag history window. The spike count is
nonnegative, therefore xi,t−k ≥ 0. Alternatively, we can rewrite (3) as

(4)

which yields the probability of a spiking event at time t. It is seen from (4) that the spiking
probability πt is a logistic sigmoid function of βcx(t); when the linear regressor βcx(t) = 0, πt
= 0.5. Note that βcx(t) = 0 defines a (d + 1)-dimensional hyperplane that determines the
decision favoring either πt > 0.5 or πt < 0.5.

Equation (3) essentially defines a spiking probability model for neuron c based on its own
spiking history, and that of the other neurons in the ensemble. It has been shown that such a
simple spiking model is a powerful tool for the inference of functional connectivity between
ensemble neurons [32], and in predicting single neuronal spikes based on collective
population neuronal dynamics [49]. Here,  can be interpreted as the baseline firing
probability of neuron c. Depending on the algebraic (positive or negative) sign of coefficient

 can be viewed as a “gain” factor (dimensionless, > 1 or < 1) that influences the
current firing probability of neuron c from another neuron i at the previous kth time lag.
Therefore, a negative value of  will strengthen the inhibitory effect and move πt towards
the negative side of the hyperplance; a positive value of  will enhance the excitatory
effect, and thereby moving πt towards the positive side of the hyperplance. In our paper, two
neurons are said to be functionally connected if any of their pairwise connections is nonzero
(or the statistical estimate is significantly nonzero).

For the cth spike train point process data, we can write down the log-likelihood function:

(5)

1In practice, the value of K (or d) needs to be determined using a statistical procedure, such as the Akaike information criterion (AIC)
or Bayesian information criterion (BIC).
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Let θ = {β1, …, βC} be the ensemble parameter vector, where dim(θ) = C(1 + d). By
assuming that the spike trains of ensemble neurons are mutually conditionally independent,
the network log-likelihood of C-dimensional spike train data is written as [32]:

(6)

Note that the index c is uncoupled from each other in the network log-likelihood function,
which implies that we can optimize the function L(βc) separately for individual spike train
observations . For simplicity, from now on we will drop off the index c at notations 
and βc when no confusion occurs.

III. Maximum Likelihood Estimation and Regularization
The objective of the standard maximum likelihood estimation is to maximize (6) given all
spike train data. It is known that when the data sample is sufficiently large, the maximum
likelihood estimate (m.l.e.) is asymptotically unbiased, consistent, and efficient. However,
when the number of samples is small, or the neural spiking rate is small (i.e., the number of
‘1’s in the observation y is sparse), many empirical observations have indicated that m.l.e.
produces either wrong or unreliable estimates. The error in the m.l.e. is typically related to
two factors: bias and variance, and thus the ultimate goal of statistical estimation is to
produce an unbiased minimum variance estimate. The issue of bias and large variance
becomes more severe when a data set with a small sample size is encountered, and the size
of the parameter space is relatively large. One way to reduce variance is through
regularization, which aims to improve the generalization ability of the model (on new data)
while fitting finite observed training data. The idea of regularization is to impose certain
prior knowledge (such as sparsity) or physiologically plausible constraint (such as temporal
smoothness) on the parameters [46], [23]. Furthermore, regularization can be interpreted as
imposing a prior on the parameter space from an empirical Bayesian perspective, and the
penalized log-likelihood will be interpreted as the log posterior density of the parameters
[42], [8]. Therefore, penalized maximum likelihood estimation seeks to maximize a
regularized log-likelihood function, which consists of a log-likelihood function plus a
penalty function weighted by a regularization parameter. The resultant penalized m.l.e. can
be viewed as a maximum a posteriori (MAP) estimate.

A. ℓ2 Regularization
First, let us consider the following penalized log-likelihood function using ℓ2-regularization:

(7)

where ρ > 0 denotes the regularization parameter, and Q denotes a user-defined positive
semidefinite matrix. The use of the quadratic term β⊤Qβ brings to the name of ℓ2
regularization. Different choices of matrix Q lead to different regularization solutions (see
Appendix A for more discussions on the choices of matrix Q). As a special case when Q = I
(identity matrix), the standard “ridge regression” is recovered:

(8)
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Note that equations (7) and (8) are concave function of the parameter vector β, and
minimizing the negative penalized log-likelihood estimation is a convex optimization
problem.

Once the regularization parameter ρ is determined (e.g., via cross-validation or
regularization path), the optimization problem reduces to maximize a concave function of β.
A standard approach to minimize a convex function is through the Newton method.
Specifically, let H(β) and g(β) denote the Hessian matrix and gradient vector of the
parameter vector β computed from (7), respectively. Denote X = [x1, …, xT] ∈ ℝT × (d+1) and
y = [y1, …, yT] ∈ ℝT, the iterative Newton update equation (at the nth iteration) is given by
[16], [34]:

(9)

where ŷ(βn) = [π̂1(βn), …, π ̂T (βn)], W (β) = diag{w1, …, wT} is a T × T diagonal weighting
matrix, with diagonal entry wt = πt(βn)(1 − πt(βn)). Equation (9) can also be formulated as
iteratively solving a linear quadratic system:

(10)

where b = Xβn + W−1(βn) (y − ŷ(βn)). For such a convex optimization problem, efficient
iterative algorithms such as the iteratively reweighted least squares (IRWLS) [34] or
conjugate gradient (CG) [28] can be used. For a large-scale data, or a large-size parameter
estimation problem, the CG method presents a more computationally efficient solution. The
CG algorithm is known to be highly efficient (with a linear complexity proportional to
dim(β)), especially when the matrix X⊤W(β)X is sparse [28]. Since the optimization problem
is convex, the solution (from either IRWLS or CG) will identify the global optimum. The
convergence criterion is determined such that the iteration stops when the log-likelihood
change in two subsequent updates is less than 10−4.

B. ℓ1 Regularization
Another popular regularization scheme is through ℓ1-regularization, which penalizes the ℓ1
norm of the solution [44]. Unlike ℓ2 regularization, ℓ1 regularization favors the sparse
solution (i.e., many coefficients in β ̂ are zeros). From a decision-theoretic perspective, ℓ2-
norm is a result of penalizing the mean of a Gaussian prior of the unknown variables, while
an ℓ1 norm penalizes the median of a Laplace prior, which has heavier tails in its distribution
shape. Specifically, the penalized log-likelihood function with ℓ1 norm regularization is
written as

(11)

which is a concave function of β, but is not twice differentiable with respect to β (therefore,
the Hessian matrix cannot be computed). Recently, many convex optimization procedures
have been proposed for the ℓ1 regularized GLM [45], [26], [27], [33], [37], [17]. Although
individual algorithms differ in their own implementations, the common optimization goal is
to seek a sparse solution that simultaneously satisfies the data fitting constraints. We shall
briefly describe one efficient and state-of-the-art algorithm based on an interior-point
method [27], which will be used for benchmark comparison in the Results section.
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The interior-point method for maximizing L1(β) in (11) aims to solve an equivalent
optimization problem [27]:

with variables u ∈ ℝd. The logarithmic barrier for the bound constraints −uj ≤ βj ≤ uj is

(12)

with domain domΦ = {(β, u) ∈ ℝd+1 × ℝd||βj| < uj, j = 1, …, d}. The new weighted objective
function augmented by the logarithmic barrier is further written as [27]:

(13)

where κ > 0 is a scalar parameter that defines the central path of a curve of E(β, u). The new
function defined in (13) is smooth and strictly convex, and it can be optimized using the
Newton or CG method. Increasing the values of κ leads to a sequence of points on the
central path, which ultimately leads to a suboptimal estimate (β ̂, û) [27].

C. Identifying functional connectivity
Upon completing the standard or penalized likelihood inference, we obtain the parameter
estimate β ̂. Let

(14)

denote the inverse of the negative Hessian matrix of the log-likelihood estimated from the
ensemble samples. From the property of m.l.e. it is known that Σ approximates the inverse
of the Fisher information matrix I(β); in addition, under the regularity condition and large
sample assumption, the m.l.e. β ̂ asymptotically follows a multivariate Gaussian distribution
[34], [5], with the mean as the true parameter β and the covariance matrix given in (14): β ̂ ~

(β,Σ), from which we can further derive the 95% Wald confidence bounds of each element

in β as . Provided any of the coefficients are significantly different from zero,
or their 95% Wald confidence intervals are not overlapping with 0, we conclude that the
“directional connection” (at a certain time lag) between the trigger neuron(s) to target
neuron is either excitatory (positive) or inhibitory (negative).

To estimate the matrix Σ in (14), in the case of standard maximum likelihood estimation for
the GLM, upon convergence we can derive that Σ = (X⊤W(β)X)−1; in the case of ℓ2
penalized maximum likelihood (PML), we have Σ = (X⊤WX + ρQ)−1: the derivation follows
a regularized IRWLS algorithm. In the case of ℓ1-PML, let β = (β0, β−) and X = (1, X−),
upon convergence for the augmented vector (β0, β−, u), the Hessian matrix computed from
the objective function (13) is given by [27]:
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(15)

where , and . In light of the Schur
complement, we obtain

(16)

where .

To quantify the connectivity among C neurons, from (3) we define the mean connectivity
ratio as follows:

(17)

where  denotes that the number of the coefficient  whose statistical estimates
are significantly nonzero. Note that the spiking dependence is directional and asymmetric in
our statistical model, the spiking dependence between A→B and B→A is not necessarily the
same. Therefore, for a total of C ensemble neurons, there are possibly (C2 −C) directions
(excluding C self-connection coefficients) between all neuron pairs.

IV. Bayesian Inference and Variational Bayes Method
In addition to the maximum likelihood estimation, another appealing statistical inference
tool is Bayesian estimation. The goal of Bayesian inference is to estimate the parameter
posterior p(β|y) given a specific parameter prior p(β). Normally, because the posterior is
analytically non-trackable, we will need to resort to strategies for approximation. These
methods include the Laplace approximation for log-posterior [18], [2], expectation
propagation (EP) for moment matching [39], [21], and MCMC sampling [36], [18]. In
comparison amongst these approximation methods, the Laplace and EP approximations are
less accurate (especially when the posterior has multiple modes or the mode is not near the
majority of the probability mass); MCMC methods are more general, but have high
computational demands, and experience difficulties with assessing the convergence of
Markov chains. As an alternative Bayesian inference procedure, variational Bayesian (VB)
methods attempt to maximize the lower bound of the marginal likelihood (a.k.a. evidence) or
the marginal log-likelihood [2]. Unlike Laplace and EP approximation, MCMC and VB
methods allow for a fully hierarchical Bayesian inference. Furthermore, the VB method is
deterministic, and thereby more computationally efficient, while MCMC methods are
prohibitive for large-scaled problems and require careful convergence diagnosis. Here we
use the hierarchical variational Bayesian (HVB) algorithm for inferring the parameters in the
point process GLM [9].2

Specifically, let α denote the hyperparameter set, and we can derive
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(18)

where p(β|α) denotes the prior distribution of β, specified by the hyperparameter α. The
variational distribution has a factorial form such that q(β, α) = q(β)q(α), which attempts to
approximate the posterior p(β, α|y). This approximation leads to an analytical posterior form
if the distributions are conjugate-exponential. The use of hyper-parameters within the
hierarchical Bayesian estimation framework provides a modeling advantage compared to the
empirical Bayesian approach, since the hierarchical Bayesian modeling employs a fully
Bayesian inference procedure that makes the parameter estimate less sensitive to the fixed
prior (as in the empirical Bayesian approaches). It is emphasized that the variational log-
likelihood L ̃ is indeed a functional—the function of two variational distributions (or pdfs)
q(β) and q(α).

A variational approximation algorithm for logistic regression has been developed in the field
of machine learning [24], and it can be easily extended to the Bayesian setting [2]. The basic
idea of variational approximation is to derive a variational lower bound for the marginal log-
likelihood function. However, the hyperparameters used in [24] are fixed a priori, so their
model is empirical Bayesian. Here, we extend the model with hierarchical Bayesian
modeling using automatic relevance determination (ARD) [30] for the purpose of variable
selection. Such a fully Bayesian inference integrated with ARD allows us to design a
separate prior for each element βj in the vector β and to set a conjugate prior p(α) for the
hyperparameters using a common gamma hyperprior. Our prior distributions are set up as
follows:

where A = diag{α} ≡ diag{α0, …, αd} (a non-ARD prior is equivalent to setting A = αI as a

special case, where α is a global hyperparameter), and .
Here, we assume that the mean hyperparameter is fixed (e.g., μ0 = 0).

Let ξ = {ξt} denote the data-dependent variational parameters (that are dependent on the
input variables {xt}). In light of the variational approximation principle [24], one can derive
a tight lower bound for the logistic regression likelihood, which will be used in the VB
inference. Specifically, applying the VB inference yields the variational posteriors q(β|y) and
q(α|y):

(19)

2The Bayesian logistic regression algorithm [19], which uses a cyclic coordinate descent algorithm for either Gaussian or Laplace
prior, is de facto an empirical Bayes algorithm, since the hyperparameter’s probability distribution was not modeled and the
hyperparameter was selected by heuristics.
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(20)

which follow from updates from conjugate priors and posteriors for the exponential family
(Gaussian and Gamma distributions). The term p̃(β, ξ) appearing in (19) denotes the
variational likelihood bound for logistic regression:

(21)

where σ(·) is a logistic sigmoid function. The variational likelihood bound at the right-hand
side of (21) has a quadratic form in terms of β, and therefore it can be approximated by a
Gaussian likelihood (which results in equation 19). The other terms appearing in (19)
through (21) are defined by

where the subscript T in the updated parameters represents the fact that the parameters and
hyperparameters are updated after passing a total of T samples. Finally, we can derive the
variational lower bound of marginal log-likelihood (Appendix B):

(22)

The VB inference alternatingly updates (19) and (20) to monotonically increase L ̃. The
criterion for algorithmic convergence is set until the consecutive change of (22) is
sufficiently small (say 10−4). Upon completing the VB inference, the confidence bounds of
the estimates can be derived from the posterior mean and the posterior variance [2].

It is noted that due to the assumed factorial form of posterior distribution, the variance of the
estimates is relatively underestimated [2]. However, this will have little effect on the
identification result. While using the ARD for variable selection, a nonsignificant coefficient
is said to be pruned if its mean and variance estimates are both small (close to 0). Therefore,
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even if the variance is slightly underestimated, provided that the mean estimate value is is
relatively large (or the solution is non-sparse), it will not change the inferred result.

V. Results
Data simulations were used to compare the performance of different statistical inference
procedures: (i) the standard ML method, (ii) penalized ML (PML) with ℓ2 regularization,
(iii) PML with ℓ1 regularization, and (iv) hierarchical VB (HVB) method. A summary of
these methods is given in Table II. Based on the performance of these methods with the
simulated data, the optimal statistical inference method was also applied to real spike train
data. All of the custom statistical inference algorithms were written in MATLAB©

(MathWorks, Natick, MA) and can be accessed online: http://neurostat.mit.edu/software.
The software of the ℓ1 regularized logistic regression [27] was accessible from
http://www.stanford.edu/~boyd/l1_logreg/.

A. Goodness-of-fit and Performance Metrics
The goodness-of-fit of the point process models estimated from all algorithms is evaluated
based on the Time-Rescaling Theorem and Kolmogorov-Smirnov (KS) test [4], [5].3
Assuming that a univariate point process specified by J discrete events: 0 < u1 < ··· < uJ < T,

defines the random variables  for j = 1, 2, …, J−1. Thus, the random variables
zjs are independent, and unit-mean exponentially distributed. By introducing the variable of
transformation vj = 1 − exp(−zj), then vjs are independent, uniformly distributed within the
region [0, 1]. Let rj = F−1(vj) (where F(·) denotes the cumulative distribution function (cdf)
of the standard Gaussian distribution), then rjs will be independent standard Gaussian
random variables. Furthermore, the standard KS test is used to compare the cdf of vj against
that of the random variables uniformly distributed within [0, 1], and the KS statistic
measures the maximum deviation of the empirical cdf from the uniform cdf. The KS
statistics will be computed for both simulated and real spike trains.

In simulation studies, in addition to the KS test, we also compute the mis-identification error
rate, which is the sum of the the false positive (FP) and false negative (FN) rates. By false
positive, it is meant that the true connection coefficient (only known in simulations) is zero,
but its statistical estimate from the algorithm is mistakenly identified as being significantly
nonzero. By false negative, it is meant that the true connection coefficient is nonzero, but the
statistical estimate from the algorithm is mistakenly identified as being zero. In simulation
studies, we also compute the mean-squared error (MSE) and the normalized MSE (NMSE)
of the estimate, which are defined as

where β ̂c denotes the estimate of the true (simulated) βc, and  denotes the mean value of
the vector βc.

Above all, we like to compare the bias and variance of the estimates computed from
different statistical inference algorithms. Roughly speaking, MSE and RMSE provide two

3In the case of fitting low-firing rate neural spike trains, when the lengths of inter-spike intervals are comparable to the length of the
observation window, a modified KS test that considers censoring can be used [51].
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measures of the estimate’s bias. The KS statistics on the testing or validation data as well as
the mis-identification rate provide essential information about the estimate’s variance. As far
as functional connectivity is concerned in the present study, the FP and FN rates are
particularly relevant. Ideally, a low mis-identification error rate and a lower KS statistics
would be the most important criterion for choosing the best algorithm.

B. Simulation Studies
With the simulation data, a systematic investigation of algorithmic performance was
conducted under different conditions. We considered a relatively small network that
consisted of 10 simulated neurons with varying connectivity ratios (five scales: 0.1, 0.2, 0.3,
0.4, 0.5). All neurons are assumed to have roughly equal baseline firing rates (four scales: 5,
10, 15, 20 spikes/s), and the nonzero history-dependent coefficients were uniformly
randomly generated between [−h, h] (where h was set to be inversely proportional to the
baseline firing rate). To create a small spike train data set with short recordings, we
simulated multivariate spike trains under the same condition for 8 independent trials, each
trial lasting 1000 ms. The input covariates consisted of spike counts from previous temporal
windows (equal size of 5 ms) up to 80 ms from all 10 neurons. Thus, there were 16 spike
counts from each neuron, totaling d = 16 × 10 = 160 covariates (dim(βc) = 161 because of an
additional baseline shift parameter). Under each condition, we simulated 20 Monte Carlo
runs with varying random seeds. In each condition, we also generated an independent set of
trials, which are reserved for testing (or cross-validation). The KS statistics for fitting the
training (KStrain) and testing (KStest) data were both computed.

Since the simulated coefficients are random and have no smoothness structure (which may
also be the case in real biological systems), we only used the standard ℓ2 regularization by
setting Q = I. The optimal regularization parameters were chosen by cross-validation or
leave-one-out procedure. In the ℓ1 regularization, there are two options for choosing
regularization parameters, one based on fixed value followed by cross-validation, and the
other based on regularization path [27]. The regularization parameter that resulted in the best
KS statistic during cross-validation was selected. We run experiments for 20 Monte Carlo
runs using random generated data from 10 virtual neurons and compared the algorithmic
performance. The averaged results of the simulation study are summarized in Figs. 1,2,3,4.
Note that all mean statistics are averaged over 10 neurons and 20 independent Monte Carlo
runs.

The following observations summarize our findings:

1. Testing the algorithms began with the training data, and the KS statistics for each
algorithm’s performance using the same training data under the different baseline
firing rate conditions are displayed in Fig. 1. Across all algorithms, differences in
KS statistic were only mildly affected by the varying connectivity ratio in this case.
As expected, the KS statistics do decrease as the baseline firing rates of the virtual
neurons increase (since more spikes were generated). Interestingly, when the
baseline rate was at 5 or 10 Hz, the standard ML algorithm had the highest KS
statistics in the training data, but when the baseline rate was increased (at 15 and 20
Hz), its performance became comparable to that of the other two penalized ML
algorithms. In all cases, the HVB algorithm performed better, and the majority of
the neuron fits fall within the 95% confidence bounds. The HVB’s superior KS
statistics are more apparent with higher firing rate than with lower firing rates.
Because all neurons have similar baseline firing rate, the KS scores from all
neurons are also very close in value.

2. The algorithms were then applied to the testing data, and the KS statistics were
computed for testing the generalization ability on unseen data from each estimate
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(Fig. 2). The ML and HVB algorithms seem to be more robust regardless of the
connectivity ratio, while the KS statistics of two penalized ML algorithms appeared
to be affected by changes of the connectivity ratio. However, no general trend was
observed. Again, the HVB algorithm exhibited the best performance in all of the
tested conditions, followed by the ℓ1-PML algorithm. As a general observation, the
two PML algorithms and HVB algorithm all showed noticeable advantages over
the standard ML inference, but this was expected, as it was anticipated that the ML
estimate would lose its desirable asymptotic properties in a “small data set”
scenario. However, while the two PML algorithms clearly outperform the standard
ML inference only under low baseline firing rate conditions, the HVB has showed
significantly improved performances regardless of the baseline rate. The results
also confirm that when the firing rate is high, and the number of ‘1s’ in the point
process observations is large, the KS statistics from all (standard or regularized)
ML algorithms are similar for both training and testing data sets. Summarizing
Figs. 1 and 2, we have seen HVB has better performance than ML and PML
methods in both fitting accuracy (training data) and generalization (testing data),
under varying connectivity ratios and varying baseline firing rates. Specifically, the
advantage of HVB is most prominent in the low connectivity ratio and/or the
medium-to-high firing condition.

3. We next considered how the mis-identification (FP+FN) error rate changes as the
connectivity ratio increases under different baseline firing rate conditions (Fig. 3).
Once again, the overall best performance was produced by use of the HVB
algorithm, followed by the ℓ2-PML algorithm, and finally the standard ML
algorithm (the ℓ1 PML algorithm was excluded from the comparison here because
the codes provided in [27] do not produce the confidence bound of the estimates).
Under the low baseline firing rate (5 Hz), the PML and HVB had almost identical
mis-identification error rates, however, as the baseline firing rate gradually
increased, the gap between the PML and HVB algorithms also increased. In our
simulations, it was also found that there is an inverse relationship between FP and
FN error: an algorithm that had a low FP error rate typically had a relatively greater
FN error. A relationship also existed between connectivity ratio and (FP+FN) error
rate that occurred regardless of the baseline firing rate, as the connectivity ratio
increases to 0.5, the (FP+FN) error rate reaches an asymptotic level for all tested
algorithms. This implies that there is a “bottleneck” limit for identifying the true
functional connectivity for all algorithms. Therefore, in the worst case, the (FP
+FN) error rate can be close to a random guess (50%). The high FN error rate may
be due to the fact that many of the “weak connections” in the simulations are
mistakenly identified as not showing connections.4 In the case where a sparse
solution is favored (i.e., in ℓ1-PML and HVB algorithms), weak connectivity
coefficients will be pushed towards zero, while only the stronger connections
(which matter more) will reach significance. However, as seen in simulations, at
about 10–15 Hz baseline rate and with 0.3 connectivity ratio, the mis-identification
error rate is still relatively high (~30%) even for the HVB algorithm. Therefore, it
remains a challenging task to identify the weak connections (especially weak
negative connections where most mis-identification errors occur) in statistical
inference.

4The seemingly high misidentification error was partially due to the setup of our simulations. While simulating the connection
weights from a uniform distribution, we counted all weak connections (even very small values) as evidence of true connectivity. In the
case of high connectivity ratio, there will be proportionally more weak connections. Consequently, the tested algorithms often failed to
detect the “weak connections”, thereby causing a high FN error (see Fig. 3 and Table III). As expected, if in simulations we only
maintain the strong connections, then the resultant mis-identification error rate would significantly reduce.
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4. Our final comparison using the simulated data involved measuring the bias
associated with each algorithm’s estimate using MSE and NMSE metrics (Fig. 4).
The PML and HVB approaches showed much better performance in MSE and
NMSE than the standard ML method, however, the HVB algorithm again
performed the best. In most of the testing conditions (except for 20 Hz baseline
rate), ℓ2-PML is better than ℓ1-PML. This is because ℓ1 regularization favors a
sparse solution, which forces many small or weak connection coefficients’
estimates towards zero, possibly causing an increase in the bias of the estimate. As
also expected, ℓ1 regularization had a smaller variance than ℓ2 regularization (see
Fig. 2 on KStest statistics).

5. Overall, the HVB method achieved the best performance in all categories: KS
statistics (in both training and testing spike train data sets), MSE and NMSE, as
well as the mis-identification error rate. Moreover, in terms of computational speed
(to achieve algorithmic convergence), it is observed that the standard ML and ℓ2-
PML algorithms have the fastest convergence, while the ℓ1-PML and HVB
algorithms have comparable convergence rates, roughly 3 ~ 6 longer (depending on
specific simulation) than the other two algorithms. In our experiments, all
algorithms converged in all simulated conditions. Generally, when the connectivity
ratio is higher or the spiking rate is lower, the convergence speed of ℓ1-PML is
slower; but the convergence speed of HVB remains very similar regardless of the
connectivity ratio and spiking rate. Furthermore, when N-fold cross-validation was
used to select the suboptimal regularization parameter in the ℓ1 and ℓ2 PML
algorithms, the total N -run computational cost and time could be much greater
when compared with the single-run HVB algorithm. Interestingly, ℓ2 PML
achieved similar performance to HVB in the mis-identification error, especially in
the low firing rate condition. However, comparing the KStrain and KStest statistics
and MSE/NMSE indicates that HVB has significantly better performance. This
might suggest that PML is effective in finding a “yes/no” solution, but not an
accurate solution; in statistical jargon, the PML methods have a good
“discrimination” but a relatively poor “calibration”. However, the discrimination
ability of PML gradually decreases as the firing rate increases.

Additional issues of interest are discussed below.

a) Data Size Analysis—The effect of the data size on algorithmic performance was also
examined. This was accomplished by keeping the size of the parameter space intact, but
doubling and tripling the size of the training data set, and comparing the performance of the
different algorithms. To illustrate the method, we have used a medium (0.3) connectivity
ratio, and computed the KS statistics (only on testing data), mis-identification error rate, and
MSE for all of the tested algorithms. The results are summarized in Table III, and mixed
results amongst the different algorithms are evident. For the standard ML method,
increasing data size improves the KS statistic and MSE, but not necessarily the mis-
identification error rate. For the penalized ML methods, increasing data size either mildly
improves or does not change the MSE or KS statistic, and has a mixed effect on mis-
identification error rate. For the HVB method, increasing data size improves the KS statistic
but has very little effect on the MSE and mis-identification error rate. These observations
suggest that the results obtained using the HVB method are very robust with regard to the
data sample size, which is particularly appealing for the small data set problem.

b) Sensitivity Analysis—Except for the standard ML algorithm, the other three
algorithms have some additional free parameters (see the last column in Table II). The
regularization parameter ρ needs to be selected from cross-validation. The κ parameter is set
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in a way that it is gradually increased in the interior-point method in a systematic way [27].
In HVB, the two hyperprior parameters a0 and b0 control the shape of the gamma prior
(which influences the sparsity of the solution). A close examination using simulation data
further revealed that the KS statistics are somewhat insensitive to the choices of a0 and b0,
although their values may change the respective FP or FN error rate. However, given a wide
range of values for (a0, b0), the total (FP+FN) error rate remains roughly stable. This
suggests that changing the hyperprior parameters of the HVB algorithm will potentially
change the desirable sparsity of the solution, which will further affect the trade-off between
the FP and FN error. As an illustration, Figure 5 presents the Monte Carlo averaged (across
10 independent runs) performances on the KS statistics and mis-identification error by
varying different values of a0 and b0 in the HVB algorithm. In these simulations, the
connectivity ratio was chosen to be 0.3 and the baseline firing rate was fixed at 10 Hz. As
seen from Fig. 5, the performance of the HVB algorithm is relatively robust to a variety
range of the hyperprior parameters. In this example, according to the averaged KStrain
statistics (minimum 0.110), the optimal set up is (a0, b0) = (10−3, 10−3); according to the
averaged KStest statistics (minimum 0.146), the optimal setup is (a0, b0) = (10−4, 10−4);
according to the averaged (FP+FN) error rate (minimum 24.5%), the optimal setup is (a0,
b0) = (10−2, 10−4). In practice, we have found that the range (a0, b0) ∈ [10−4, 10−2]
consistently achieved good performance.

Overall, it was found in our simulations (with various setup conditions) that in the presence
of small connectivity ratio, high spiking rate and a large number of spiking data, all tested
algorithms produce similar KS statistics and mis-identification error. In the other conditions,
the HVB algorithm always has an obviously superior margin

C. Real Spike Train Analysis
The best statistical inference method, the HVB algorithm, was then applied to real spike
train data. This experimental data featured groups of neurons that were simultaneously
recorded from the primary motor cortex of an awake, behaving cat sitting quietly in a
Faraday cage. The experimental protocol for data acquisition, and the behavioral paradigm
has been previously reported in detail [22]. In the current study, real neural data is used
purely for demonstration purposes, and thus we used recordings from only one animal
during a period of motor inactivity (i.e., baseline firing activity) so that neural firing rates
were as low as possible (to purposely create sparse spiking data sets). Specific physiological
details of the data used for this analysis are provided in Table IV.

Three independent recording sessions were used in this analysis. The first, second and third
data sets consist of 13, 15 and 15 neurons, and 18, 18 and 17 trials, respectively, and each
trial was 3000 ms in length. The M1 neurons in these data sets were classified as either
regular-spiking (RS) or fast-spiking (FS) neurons based upon extracellular firing features.
Many of the neurons in these data sets had very low firing rates during the trial periods
(Table IV), and the short data recordings and low firing rate fit the two key criteria of the
“small data problem”. In Fig. 6, we show representative spike rasters and inter-spike interval
(ISI) histograms from one RS and one FS neuron. To estimate the functional connectivity
amongst the ensemble neurons, we have assumed that the spiking dependence among the
cells remain unchanged across different trials.

We binned the spike trains with 1 ms temporal resolution, and obtained multivariate point
process observations. From the observed ISI histograms, we chose the spiking history up to
100 ms and selected 8 history bins (unit: ms) with the following setup:
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The first spiking history window is chosen to capture the refractory period of the spiking
property. For a total of C neurons, the size of parameters for fitting each neuron’s spike train
recordings is dim(β) = 8C +1. For the present problem, dim(β) = 105 (for C = 13) or dim(β)
= 121 (for C = 15). For the inference of the HVB algorithm, the initial parameters were set
as follows: a0 = b0 = 10−3, and μ0 = 0, although it was found that the results are insensitive
to these values. Upon fitting all 43 neurons, 30 neurons’ KS plots (Dataset-1: 8/13;
Dataset-2: 12/15; Dataset-3: 10/15) are completely within the 95% confidence bounds, and
41 neurons’ KS plots are within the 90% confidence bounds. These highly accurate fits
indicate that the statistical model (3) can satisfactorily characterize the spiking activity of
individual neurons. Using the HVB algorithm, the inferred (averaged) network connectivity
ratios from 3 data sets are 0.27, 0.21, and 0.13, respectively. Amongst all three data sets, it
was found that the fraction of neural interactions is the highest amongst the FS-FS cell-
pairing, followed by FS-RS and RS-RS groups (Table IV), which supports previous studies
investigating the network properties of M1 neurons [8]. The relatively lower connectivity
ratio in Dataset-3 is due to a lower ratio of FS/RS neurons (Table IV). These results suggest
that during periods of motor inactivity, FS neurons (inhibitory interneurons) are involved in
more functional connectivity than RS neurons (pyramidal cells) in M1. Furthermore, a close
examination of the neural interactions inferred by the HVB algorithm also reveals that many
FS neurons have inhibitory effects on the spiking activity of RS neurons. Figure 7 illustrates
an example of such spiking dependence between one FS and one RS neuron—note that the
inhibitory spiking dependence at a fine timescale was not detectable by a more traditional
method (the JPSTH). Finally, the strengths of (absolute value of  averaged over K time
lags) neuronal interactions inferred from 3 data sets are shown in Fig. 8. In each plot, the
size of the circle is proportional to the relative (normalized) strength respective to all
neurons (including self-interactions).

VI. Discussion and Conclusion
Inferring functional connectivity of a neuronal network using simultaneously recorded spike
trains is an important task in computational neuroscience, and the point process GLM
provides a principled framework for statistical estimation. However, in addition to
employing a favorable statistical model, the selection of an appropriate statistical inference
algorithm is also a crucial undertaking. The present study aimed to solve a problem that has
been present in the practice of experimental brain recording for many years: the reliability of
sparse data sets for analysis [43]. Thus, this paper investigates several statistical inference
procedures, while also applying these methods to the sparse spiking data. Many sets of
experimental data are not appropriate for analysis of spiking dependence either because they
feature neurons that are spiking at very low frequencies, or because during a difficult
behavioral experiment, too few trials of the desired behavior are secured. Essentially,
improving the reliability of the statistical estimates was the focus of our study, and simulated
spike train data were used to compare different statistical inference algorithms. The four
algorithms that were tested were the standard ML method, the ℓ2 and ℓ1 PML methods, and
the HVB method. Systematic investigations were conducted to compare the performance of
the algorithms (in terms of the KS statistics, MSE, and mis-identification error) under
different conditions (with varying baseline firing rate and network connectivity ratio). From
the Monte Carlo estimation results we conclude that (i) the HVB algorithm performed the
best amongst all tested algorithms, and (ii) regularization is very important for the maximum
likelihood estimation, especially in the presence of neurons with low firing rate. As an
illustration, we apply the HVB algorithm to real spike train recordings from ensemble M1
neurons.

The hierarchical Bayesian method has been shown to be a powerful tool for statistical
inference [18], whose applications have gone far beyond the point process GLM. The VB
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inference is appealing for Bayesian inference from the perspective of computational
efficiency, with the goal of maximizing the lower bound of the marginal log-likelihood of
observed data. The ARD principle employed in the Bayesian inference procedure provides a
natural way for variable selection in that redundant or insignificant features will be shown to
have smaller weights (close to zeros), thereby favoring a sparse solution. The sparsity of the
solution is controlled by the hyperprior parameters, which can be set to be non-informative.
Finally, the full posteriors of the parameters can be obtained, which can be used to compute
a predictive distribution of unseen data [2].

The framework of the point process GLM and the HVB method provide a new way to
investigate the neural interactions of ensemble neurons using simultaneously recorded spike
trains. The point process GLM using the collective neuronal firing history has been shown to
be effective in predicting single neuron spikes from humans and monkeys [49], which has
potential applications for neural prosthetic devices. In addition, our proposed methodology
can be used for assessing neural interactions. Since the point process GLM using a network
likelihood function enabled us to assess spiking dependencies in populations of
simultaneously recorded neurons, our approach is favorable when compared with traditional
techniques (e.g., cross-correlation or JPSTH), as it may be used to examine functional
connectivity as it occurs in multiple neurons simultaneously, compared with only being able
to perform pairwise analysis. This is appealing for examining neural interactions at different
regions of the brains, or for conducting quantitative comparison during different behaviors
or task performances. The findings of our study indicates that the proposed HVB method
provides a satisfactory solution to the “sparse spiking data problem” faced by many
neuroscience researchers, and this method appears to outperform other contemporary
statistical inference procedures in the assessment of functional connectivity in sets of spike
train data where sparsity is not an issue.

Similar to other contemporary statistical approaches, our method for inferring the functional
connectivity of ensemble neurons relies on certain statistical assumptions. For example, the
stationarity of neuronal data during short durations of trials as well as across trials. Whilst
this assumption is not always valid between trials, the non-stationarity issue across trials can
be addressed by considering a random-effects GLM [11], and maximum likelihood and
Bayesian inference procedures can be developed accordingly.
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Appendix A: Design of Desirable Positive-Definite Matrix Q
Assuming that the spiking history dependent coefficients change smoothly between the
neighboring temporal windows), we may impose a “local smoothness” constraint on the
parameters. Heuristically, when the parameter sequences {βc,k} are temporally smooth for
any index c, the local variance will be relatively small. Let β ̄c,k denote the corresponding
short-term exponentially weighted average of βc,k:

(23)

Chen et al. Page 19

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://pages.cs.wisc.edu/~gfung/GeneralL1/


where 0 < γ < 1 is a forgetting factor that determines the range of local smoothness. The role
of γ is to act like a low-pass filter: the smaller the value of γ, the more emphasis is placed on
the βc,k, and a smaller smoothing effect emerges. Let us define a new quadratic penalty
function from (23):

(24)

which penalizes the local variance of {βc,k}. Let β ̄c denote the short-term average vector for
the corresponding parameter βc = [βc,1, …, βc,K], then we further have

(25)

where a smoothing matrix S is introduced to represent β ̄c in terms of βc. Note that the
exponentially moving average β ̄c,k can be viewed as a convolution product between the
sequences {βc,k} and a template. Suppose the template vector has an exponential-decay
property with length 4, such that template = [(1− γ), γ (1− γ), γ2(1−γ), γ3(1−γ)]. Note that the
convolution smoothing operation can also be conveniently expressed as a matrix product
operation: β ̄c = Sβc, where S is a Toeplitz matrix with the right-shifted template appearing at
each row given as follows:

Finally, we obtain the regularization matrix Q = P⊤P, where the matrix P has a block-
Toeplitz structure:

(26)

where dim(I − S) = K, dim(Q) = KC, and the number of blocks is equal to C. It is worth
commenting that our smoothing operator can be seen as an extension of the contingent
smoothness operator [46], where the term (βc,k − β ̄c,k)2 in equation (24) is replaced by (βc,k
− βc,k−1)2 (i.e., the local mean β ̄c,k is replaced by its intermediate neighbor βc,k−1 without
using any moving averaging). Nevertheless, our regularization operator is more general and
also accommodates [23] as a special case. Like ours, the regularization matrix Q in [23] also
has a block-Toeplitz structure. Note that when γ = 1, S will be an all-zeros matrix, P and Q
will become identity matrices, and our smoothed regularization will reduce to the standard
“ridge regularization”; on the other hand, when γ = 0, S will be an identity matrix, P and Q
will become all-zeros matrices, therefore no regularization is imposed. Hence, our approach
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(0 < γ < 1) can be viewed as a quantitative choice between two extrema of no regularization
(γ = 0) and ridge regularization (γ = 1).

As already mentioned, we may use the contingent smoothness operator as in [46], in which
 is viewed as a curve, and the first-order derivative of the curve is approximated by

βc,k − βc,k−1. If we penalize the norm of the first-order derivative, the objective function is
then written as

(27)

and the ith block (i = 1, …, C) of the block-diagonal matrix P in (27) is derived as

which both have a banded-diagonal structure.

Appendix B: Derivation of Equation (22)
From equations (18) and (21), we can derive the variational lower bound of the marginal
log-likelihood (for notation simplicity, the dependence of y in all posteriors is made
implicit):

(28)

where the individual terms in (28) are given by

(29)

(30)

(31)
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(32)

(33)

where Γ(·) denotes the gamma function, and ψ(·) denotes the digamma function, which is
defined as the logarithmic derivative of the gamma function. Other notations have been
defined earlier following equation (21). Summarizing equations (29) through (33) yields
(22). The pseudocode of the HVB algorithm is given below.

Algorithm 1

Pseudocode for the HVB algorithm.

Initialize the hyperprior parameters a0 and b0, and set the initial parameter value to 0 (i.e. β = 0).

while convergence criteria not met do

 Evaluate the data-dependent variational parameters ξ = {ξt} for each data points xt (t = 1, …, T).

 Update the parameter variational posterior mean μT and variance ΣT.

 Update the noise precision hyperparameter [A].

 Update the hyperprior parameters aT and bj,T (j = 0, …, d).

 Compute the variational lower bound of marginal log-likelihood L ̃ (Eq. 22).

 end while

end
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Figure 1.
Comparison of inference methods on KS statistics for the training set.
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Figure 2.
Comparison of inference methods on KS statistics for the testing set.
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Figure 3.
Comparison of inference methods on mis-identification (FP+FN) error rate.
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Figure 4.
Comparison of inference methods on MSE and NMSE statistics. Note that the y-axis in the
first two columns are in log-scale.
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Figure 5.
Comparative performances (mean statistics averaged over 10 Monte Carlo runs) on the KS
statistics (a, b), FP error (c), FN error (d), and (FP+FN) error (e) with varying values of
hyperprior parameters a0 and b0 in the HVB algorithm.
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Figure 6.
Spike rasters and inter-spike interval (ISI) histograms of two representative M1 neurons
(Dataset-1): (a) a RS neuron (mean firing rate: 3.7 Hz), (b) a FS neuron (mean firing rate: 13
Hz). The legends in the ISI histograms denote the median ISI values. One-sample KS test
indicated that these two ISI samples are not exponential distributed (P > 0.05).
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Figure 7.
Illustrations of pairwise neuronal spiking dependence between one RS neuron (#5) and one
FS neuron (#10), using the raw (top left) and corrected (top right) joint peri-stimulus time
histograms (JPSTHs) and the inferred bi-directional (bottom) spiking dependence based on
the HVB algorithm. Here, A→B means that neuron A is a trigger cell, and neuron B is the
target cell; the shaped area indicates the 95% confidence intervals of the estimates. An
positive/negative value of the estimate implies an excitatory/inhibitory effect on the spiking
of the target from the trigger cell. The corrected JPSTH (5 ms bin) did not detect any
significant interactions between two neurons as the correlation coefficient is 0.029. In
contrast, a significant excitatory/inhibitory RS→FS effect and a significant inhibitory
FS→RS effect were detected by our method.
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Figure 8.
Visualization of the strengths of neuronal interactions inferred from M1 neuronal assemblies
during the baseline period. In each plot, the size of the circle is proportional to the relative
strength (normalized such that the maximum strength is 1) respective to all neurons
(including self-interactions); the symbol * along the axes in each plot marks the FS neuron.
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TABLE II

Comparison of statistical inference methods and algorithms.

Inference method Algorithm Free parameter(s)

maximum likelihood (ML) IRWLS, CG none

ℓ2 penalized ML IRWLS, CG ρ

ℓ1 penalized ML interior-point method ρ, κ

hierarchical Bayesian variational Bayes hyperpriors a0, b0
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