1,612 research outputs found

    Abelian covers of surfaces and the homology of the level L mapping class group

    Full text link
    We calculate the first homology group of the mapping class group with coefficients in the first rational homology group of the universal abelian Z/LZ\Z / L \Z-cover of the surface. If the surface has one marked point, then the answer is \Q^{\tau(L)}, where τ(L)\tau(L) is the number of positive divisors of LL. If the surface instead has one boundary component, then the answer is \Q. We also perform the same calculation for the level LL subgroup of the mapping class group. Set HL=H1(Σg;Z/LZ)H_L = H_1(\Sigma_g;\Z/L\Z). If the surface has one marked point, then the answer is \Q[H_L], the rational group ring of HLH_L. If the surface instead has one boundary component, then the answer is \Q.Comment: 32 pages, 10 figures; numerous corrections and simplifications; to appear in J. Topol. Ana

    The Smith Cloud: HI associated with the Sgr dwarf?

    Get PDF
    The Smith high velocity cloud (V(LSR) = 98 kms) has been observed at two locations in the emission lines [OIII]5007, [NII]6548 and H-alpha. Both the [NII] and H-alpha profiles show bright cores due to the Reynolds layer, and red wings with emission extending to V(LSR) = 130 kms. This is the first simultaneous detection of two emission lines towards a high velocity cloud, allowing us to form the ratio of these line profiles as a function of LSR velocity. At both cloud positions, we see a clear distinction between emission at the cloud velocity, and the Reynolds layer emission (V(LSR) = 0). The [NII]/H-alpha ratio (=0.25) for the Reynolds layer is typical of the warm ionised medium. At the cloud velocity, this ratio is enhanced by a factor of 3-4 compared to emission at rest with respect to the LSR. A moderately deep upper limit at [OIII] (0.12R at 3-sigma) was derived from our data. If the emission arises from dilute photoionisation from hot young stars, the highly enhanced [NII]/H-alpha ratio, the [OIII] non-detection and weak H-alpha emission (0.24-0.30R) suggest that the Smith Cloud is 26+/-4 kpc from the Sun, at a Galactocentric radius of 20+/-4 kpc. This value assumes that the emission arises from an optically thick slab, with a covering fraction of unity as seen by the ionizing photons, whose orientation is either (a) parallel to the Galactic disk, or (b) such as to maximize the received flux from the disk. The estimated mass and size of the cloud are 4x10^6 Msun and 6 kpc. We discuss a possible association with the much larger Sgr dwarf, at a galactocentric radius of 16+/-2 kpc, which lies within 35 degrees (~12 kpc) of the Smith Cloud.Comment: 18 pages, 14 figures, mn.sty. Our first application of a new method for establishing distances to high velocity clouds. This version matches paper to appear in MNRAS, 299, 611-624 (Sept. 11 issue

    The scattered debris of the Magellanic Stream

    Full text link
    Searching the HI Parkes All-Sky Survey (HIPASS) and its northern extension, we detected a population of very compact high-velocity clouds (HVCs) with similar velocities in the Galactic standard-of-rest frame which appear to be arranged in several filaments aligned with the nearby Magellanic Stream. A comparison with published OVI/CaII absorption and HI emission line measurements suggests that the HVCs are condensations within an extended and mainly ionised component of the Magellanic Stream. They coincide in position with a faint gas stream predicted in numerical simulations of the Magellanic Clouds by Gardiner & Noguchi (1996). Consequently, the Magellanic Stream could be much more extended than generally believed.Comment: 5 pages, 4 figures, accepted for publication in MNRA

    The four leading arms of the Magellanic Cloud system

    Full text link
    The Magellanic Cloud System (MCS) interacts via tidal and drag forces with the Milky Way galaxy. Using the Parkes Galactic All-Sky Survey (GASS) of atomic hydrogen we explore the role of drag on the evolution of the so-called Leading Arm (LA). We present a new image recognition algorithm that allows us to differentiate features within a 3-D data cube (longitude, latitude, radial velocity) and to parameterize individual coherent structures. We compiled an HI object catalog of LA objects within an area of 70 degr x 85 degr (1.6 sr) of the LA region. This catalog comprises information of location, column density, line width, shape and asymmetries of the individual LA objects above the 4-sigma threshold of Delta T_b simeq 200 mK. We present evidence of a fourth arm segment (LA4). For all LA objects we find an inverse correlation of velocities v_GSR in Galactic Standard of Rest frame with Magellanic longitude. High-mass objects tend to have higher radial velocities than low-mass ones. About 1/4 of all LA objects can be characterized as head-tail (HT) structures. Using image recognition with objective criteria, it is feasible to isolate most of LA emission from the diffuse Milky Way HI gas. Some blended gas components (we estimate 5%) escape detection, but we find a total gas content of the LA that is about 50% higher than previously assumed. These methods allow the deceleration of the LA clouds to be traced towards the Milky Way disk by drag forces. The derived velocity gradient strongly supports the assumption that the whole LA originates entirely in the Large Magellanic Cloud (LMC). LA4 is observed opposite to LA1, and we propose that both arms are related, spanning about 52kpc in space. HT structures trace drag forces even at tens of kpc altitudes above the Milky Way disk.Comment: 12 pages, 7 figures, 2 tables, accepted for publication Astronomy & Astrophysics 201

    Physical Properties of Complex C Halo Clouds

    Get PDF
    Observations from the Galactic Arecibo L-Band Feed Array HI (GALFA-HI) Survey of the tail of Complex C are presented and the halo clouds associated with this complex cataloged. The properties of the Complex C clouds are compared to clouds cataloged at the tail of the Magellanic Stream to provide insight into the origin and destruction mechanism of Complex C. Magellanic Stream and Complex C clouds show similarities in their mass distributions (slope = -0.7 and -0.6, respectively) and have a common linewidth of 20 - 30 km/s (indicative of a warm component), which may indicate a common origin and/or physical process breaking down the clouds. The clouds cataloged at the tail of Complex C extend over a mass range of 10^1.1 to 10^4.8 solar masses, sizes of 10^1.2 to 10^2.6 pc, and have a median volume density of 0.065 cm^(-3) and median pressure of (P/k) = 580 K cm^{-3}. We do not see a prominent two-phase structure in Complex C, possibly due to its low metallicity and inefficient cooling compared to other halo clouds. From assuming the Complex C clouds are in pressure equilibrium with a hot halo medium, we find a median halo density of 5.8 x 10^(-4) cm^(-3), which given a constant distance of 10 kpc, is at a z-height of ~3 kpc. Using the same argument for the Stream results in a median halo density of 8.4 x 10^(-5) x (60kpc/d) cm^(-3). These densities are consistent with previous observational constraints and cosmological simulations. We also assess the derived cloud and halo properties with three dimensional grid simulations of halo HI clouds and find the temperature is generally consistent within a factor of 1.5 and the volume densities, pressures and halo densities are consistent within a factor of 3.Comment: Accepted for publication in AJ. 54 pages, including 6 tables and 16 figure

    Symplectic Heegaard splittings and linked abelian groups

    Full text link
    Let ff be the gluing map of a Heegaard splitting of a 3-manifold WW. The goal of this paper is to determine the information about WW contained in the image of ff under the symplectic representation of the mapping class group. We prove three main results. First, we show that the first homology group of the three manifold together with Seifert's linking form provides a complete set of stable invariants. Second, we give a complete, computable set of invariants for these linking forms. Third, we show that a slight augmentation of Birman's determinantal invariant for a Heegaard splitting gives a complete set of unstable invariants.Comment: 78 pages, 1 figure, final version; to appear in "Groups of Diffeomorphisms
    corecore