1,668 research outputs found

    Large droplet impact on water layers

    Get PDF
    The impact of large droplets onto an otherwise undisturbed layer of water is considered. The work, which is motivated primarily with regard to aircraft icing, is to try and help understand the role of splashing on the formation of ice on a wing, in particular for large droplets where splash appears, to have a significant effect. Analytical and numerical approaches are used to investigate a single droplet impact onto a water layer. The flow for small times after impact is determined analytically, for both direct and oblique impacts. The impact is also examined numerically using the volume of fluid (VOF) method. At small times there are promising comparisons between the numerical results, the analytical solution and experimental work capturing the ejector sheet. At larger times there is qualitative agreement with experiments and related simulations. Various cases are considered, varying the droplet size to layer depth ratio, including surface roughness, droplet distortion and air effects. The amount of fluid splashed by such an impact is examined and is found to increase with droplet size and to be significantly influenced by surface roughness. The makeup of the splash is also considered, tracking the incoming fluid, and the splash is found to consist mostly of fluid originating in the layer

    Droplet impact on a thin fluid layer

    Get PDF
    The initial stages of high-velocity droplet impact on a shallow water layer are described, with special emphasis given to the spray jet mechanics. Four stages of impact are delineated, with appropriate scalings, and the successively more important influence of the base is analysed. In particular, there is a finite time before which part of the water in the layer remains under the droplet and after which all of the layer is ejected in the splash jet

    Local species assemblages are influenced more by past than current dissimilarities in photosynthetic activity

    Get PDF
    Most land on Earth has been changed by humans and past changes of land can have lasting influences on current species assemblages. Yet few globally representative studies explicitly consider such influences even though auxiliary data, such as from remote sensing, are readily available. Time series of satellite-derived data have been commonly used to quantify differences in land-surface attributes such as vegetation cover, which will among other things be influenced by anthropogenic land conversions and modifications. Here we quantify differences in current and past (up to five years before sampling) vegetation cover, and assess whether such differences differentially influence taxonomic and functional groups of species assemblages between spatial pairs of sites. Specifically, we correlated between-site dissimilarity in photosynthetic activity of vegetation (the Enhanced Vegetation Index) with the corresponding dissimilarity in local species assemblage composition from a global database using a common metric for both, the Bray-Curtis index. We found that dissimilarity in species assemblage composition was on average more influenced by dissimilarity in past than current photosynthetic activity, and that the influence of past dissimilarity increased when longer time periods were considered. Responses to past dissimilarity in photosynthetic activity also differed among taxonomic groups (plants, invertebrates, amphibians, reptiles, birds and mammals), with reptiles being among the most influenced by more dissimilar past photosynthetic activity. Furthermore, we found that assemblages dominated by smaller and more vegetation-dependent species tended to be more influenced by dissimilarity in past photosynthetic activity than prey-dependent species. Overall, our results have implications for studies that investigate species responses to current environmental changes and highlight the importance of past changes continuing to influence local species assemblage composition. We demonstrate how local species assemblages and satellite-derived data can be linked and provide suggestions for future studies on how to assess the influence of past environmental changes on biodiversity

    Global effects of land use on biodiversity differ among functional groups

    Get PDF
    Human land use has caused substantial declines in global species richness. Evidence from different taxonomic groups and geographic regions suggests that land use does not equally impact all organisms within terrestrial ecological communities, and that different functional groups of species may respond differently. In particular, we expect large carnivores to decline more in disturbed land uses than other animal groups. We present the first global synthesis of responses to land use across functional groups using data from a wide set of animal species, including herbivores, omnivores, carnivores, fungivores and detritivores; and ranging in body mass from 2 Ɨ 10^{-6} g (an oribatid mite) to 3,825 kg (the African elephant). We show that the abundance of large endotherms, small ectotherms, carnivores and fungivores (although in the last case, not significantly) are reduced disproportionately in human land uses compared with the abundance of other functional groups. The results, suggesting that certain functional groups are consistently favoured over others in land used by humans, imply a substantial restructuring of ecological communities. Given that different functional groups make unique contributions to ecological processes, it is likely that there will be substantial impacts on the functioning of ecosystems

    Light enough to travel: migratory bats have smaller brains, but not larger hippocampi, than sedentary species

    Get PDF
    Migratory bird species have smaller brains than non-migratory species. The behavioural flexibility/migratory precursor hypothesis suggests that sedentary birds have larger brains to allow the behavioural flexibility required in a seasonally variable habitat. The energy trade-off hypothesis proposes that brains are heavy, energetically expensive and therefore, incompatible with migration. Here, we compared relative brain, neocortex and hippocampus volume between migratory and sedentary bats at the species-level and using phylogenetically independent contrasts. We found that migratory bats had relatively smaller brains and neocortices than sedentary species. Our results support the energy trade-off hypothesis because bats do not exhibit the same degree of flexibility in diet selection as sedentary birds. Our results also suggest that bat brain size differences are subtler than those found in birds, perhaps owing to bats' shorter migration distances. Conversely, we found no difference in relative hippocampus volume between migratory and sedentary species, underscoring our limited understanding of the role of the hippocampus in bats

    Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes

    Get PDF
    1. Bees are a functionally important and economically valuable group, but are threatened byland-use conversion and intensiļ¬cation. Such pressures are not expected to affect all species identically; rather, they are likely to be mediated by the speciesā€™ ecological traits. 2. Understanding which types of species are most vulnerable under which land uses is an important step towards effective conservation planning.3. We collated occurrence and abundance data for 257 bee species at 1584 European sites from surveys reported in 30 published papers (70 056 records) and combined them with species-level ecological trait data. We used mixed-effects models to assess the importance of land use (land-use class, agricultural use-intensity and a remotely-sensed measure of vegetation),traits and trait 9 land-use interactions, in explaining species occurrence and abundance.4. Speciesā€™ sensitivity to land use was most strongly inļ¬‚uenced by ļ¬‚ight season duration and foraging range, but also by niche breadth, reproductive strategy and phenology, with effects that differed among cropland, pastoral and urban habitats.5. Synthesis and applications. Rather than targeting particular species or settings, conservation action s may be more effective if focused on mitigating situations where speciesā€™ traits strongly and negatively interact with land-use pressures. We ļ¬nd evidence that low-intensity agriculture can maintain relatively diverse bee communities; in more intensive settings, added ļ¬‚oral resources may be beneļ¬cial, but will require careful placement with respect to foraging ranges of smaller bee species. Protection of semi-natural habitats is essential, however; in particular, conversion to urban environments could have severe effects on bee diversity and pollination services. Our results highlight the importance of exploring how ecological traits mediate species responses to human impacts, but further research is needed to enhance the predictive ability of such analyses

    Influence of Coulomb and Phonon Interaction on the Exciton Formation Dynamics in Semiconductor Heterostructures

    Full text link
    A microscopic theory is developed to analyze the dynamics of exciton formation out of incoherent carriers in semiconductor heterostructures. The carrier Coulomb and phonon interaction is included consistently. A cluster expansion method is used to systematically truncate the hierarchy problem. By including all correlations up to the four-point (i.e. two-particle) level, the fundamental fermionic substructure of excitons is fully included. The analysis shows that the exciton formation is an intricate process where Coulomb correlations rapidly build up on a picosecond time scale while phonon dynamics leads to true exciton formation on a slow nanosecond time scale.Comment: 18 pages, 7 figure

    How children eat may contribute to rising levels of obesity children's eating behaviours: An intergenerational study of family influences

    Get PDF
    The term ā€˜obesogenic environmentā€™ is rapidly becoming part of common phraseology. However, the influence of the family and the home environment on children's eating behaviours is little understood. Research that explores the impact of this micro environment and intergenerational influences affecting children's eating behaviours is long overdue. A qualitative, grounded theory approach, incorporating focus groups and semi-structured interviews, was used to investigate the family environment and specifically, the food culture of different generations within families. What emerged was a substantive theory based on ā€˜ordering of eatingā€™ that explains differences in eating behaviours within and between families. Whereas at one time family eating was highly ordered and structured, typified by the grandparent generation, nowadays family eating behaviours are more haphazard and less ordered, evidenced by the way the current generation of children eat. Most importantly, in families with an obese child eating is less ordered compared with those families with a normal weight child. Ordering of eating' is a unique concept to emerge. It shows that an understanding of the eating process is crucial to the development and improvement of interventions targeted at addressing childhood obesity within the family context

    Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity

    Get PDF
    We present a novel formulation for biochemical reaction networks in the context of signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of 'source' species, which receive input signals. Signals are transmitted to all other species in the system (the 'target' species) with a specific delay and transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and recalled to build discrete dynamical models. By separating reaction time and concentration we can greatly simplify the model, circumventing typical problems of complex dynamical systems. The transfer function transformation can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant insight, while remaining an executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modules that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. We also found that overall interconnectedness depends on the magnitude of input, with high connectivity at low input and less connectivity at moderate to high input. This general result, which directly follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-dependent signal transmission inactivation.Comment: 13 pages, 5 tables, 15 figure

    Grain boundary pinning and glassy dynamics in stripe phases

    Full text link
    We study numerically and analytically the coarsening of stripe phases in two spatial dimensions, and show that transient configurations do not achieve long ranged orientational order but rather evolve into glassy configurations with very slow dynamics. In the absence of thermal fluctuations, defects such as grain boundaries become pinned in an effective periodic potential that is induced by the underlying periodicity of the stripe pattern itself. Pinning arises without quenched disorder from the non-adiabatic coupling between the slowly varying envelope of the order parameter around a defect, and its fast variation over the stripe wavelength. The characteristic size of ordered domains asymptotes to a finite value $R_g \sim \lambda_0\ \epsilon^{-1/2}\exp(|a|/\sqrt{\epsilon}),where, where \epsilon\ll 1isthedimensionlessdistanceawayfromthreshold, is the dimensionless distance away from threshold, \lambda_0thestripewavelength,and the stripe wavelength, and a$ a constant of order unity. Random fluctuations allow defect motion to resume until a new characteristic scale is reached, function of the intensity of the fluctuations. We finally discuss the relationship between defect pinning and the coarsening laws obtained in the intermediate time regime.Comment: 17 pages, 8 figures. Corrected version with one new figur
    • ā€¦
    corecore