63 research outputs found

    The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae)

    Get PDF
    BACKGROUND: Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. METHODS: Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. RESULTS: Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. CONCLUSIONS: The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts

    Evaluation of host-derived volatiles for trapping Culicoides biting midges (Diptera: Ceratopogonidae)

    Get PDF
    Culicoides biting midges (Diptera: Ceratopognidae) cause pain and distress through blood feeding, and transmit viruses that threaten both animal and human health worldwide. There are few effective tools for monitoring and control of biting midges, with semiochemical-based strategies offering the advantage of targeting host-seeking populations. In previous studies, we identified the host preference of multiple Culicoides species, including Culicoides impunctatus, as well as cattle-derived compounds that modulate the behavioral responses of C. nubeculosus under laboratory conditions. Here, we test the efficacy of these compounds, when released at different rates, in attracting C. impunctatus under field conditions in Southern Sweden. Traps releasing 1-octen-3-ol, decanal, phenol, 4-methylphenol or 3-propylphenol, when combined with carbon dioxide (CO2), captured significantly higher numbers of C. impunctatus compared to control traps baited with CO2 alone, with low release rates (0.1 mg h−1, 1 mg h−1) being generally more attractive. In contrast, traps releasing octanal or (E)-2-nonenal at 1 mg h−1 and 10 mg h−1 collected significantly lower numbers of C. impunctatus than control traps baited with CO2 only. Nonanal and 2-ethylhexanol did not affect the attraction of C. impunctatus when compared to CO2 alone at any of the release rates tested. The potential use of these semiochemicals as attractants and repellents for biting midge control is discussed

    A Broad Assessment of Factors Determining Culicoides imicola Abundance: Modelling the Present and Forecasting Its Future in Climate Change Scenarios

    Get PDF
    Bluetongue (BT) is still present in Europe and the introduction of new serotypes from endemic areas in the African continent is a possible threat. Culicoides imicola remains one of the most relevant BT vectors in Spain and research on the environmental determinants driving its life cycle is key to preventing and controlling BT. Our aim was to improve our understanding of the biotic and abiotic determinants of C. imicola by modelling its present abundance, studying the spatial pattern of predicted abundance in relation to BT outbreaks, and investigating how the predicted current distribution and abundance patterns might change under future (2011–2040) scenarios of climate change according to the Intergovernmental Panel on Climate Change. C. imicola abundance data from the bluetongue national surveillance programme were modelled with spatial, topoclimatic, host and soil factors. The influence of these factors was further assessed by variation partitioning procedures. The predicted abundance of C. imicola was also projected to a future period. Variation partitioning demonstrated that the pure effect of host and topoclimate factors explained a high percentage (>80%) of the variation. The pure effect of soil followed in importance in explaining the abundance of C. imicola. A close link was confirmed between C. imicola abundance and BT outbreaks. To the best of our knowledge, this study is the first to consider wild and domestic hosts in predictive modelling for an arthropod vector. The main findings regarding the near future show that there is no evidence to suggest that there will be an important increase in the distribution range of C. imicola; this contrasts with an expected increase in abundance in the areas where it is already present in mainland Spain. What may be expected regarding the future scenario for orbiviruses in mainland Spain, is that higher predicted C. imicola abundance may significantly change the rate of transmission of orbiviruses

    Evolution and Phylogenetic Analysis of Full-Length VP3 Genes of Eastern Mediterranean Bluetongue Virus Isolates

    Get PDF
    Bluetongue virus (BTV) is the ‘type’ species of the genus Orbivirus within the family Reoviridae. The BTV genome is composed of ten linear segments of double-stranded RNA (dsRNA), each of which codes for one of ten distinct viral proteins. Previous phylogenetic comparisons have evaluated variations in genome segment 3 (Seg-3) nucleotide sequence as way to identify the geographical origin (different topotypes) of BTV isolates. The full-length nucleotide sequence of genome Seg-3 was determined for thirty BTV isolates recovered in the eastern Mediterranean region, the Balkans and other geographic areas (Spain, India, Malaysia and Africa). These data were compared, based on molecular variability, positive-selection-analysis and maximum-likelihood phylogenetic reconstructions (using appropriate substitution models) to 24 previously published sequences, revealing their evolutionary relationships. These analyses indicate that negative selection is a major force in the evolution of BTV, restricting nucleotide variability, reducing the evolutionary rate of Seg-3 and potentially of other regions of the BTV genome. Phylogenetic analysis of the BTV-4 strains isolated over a relatively long time interval (1979–2000), in a single geographic area (Greece), showed a low level of nucleotide diversity, indicating that the virus can circulate almost unchanged for many years. These analyses also show that the recent incursions into south-eastern Europe were caused by BTV strains belonging to two different major-lineages: representing an ‘eastern’ (BTV-9, -16 and -1) and a ‘western’ (BTV-4) group/topotype. Epidemiological and phylogenetic analyses indicate that these viruses originated from a geographic area to the east and southeast of Greece (including Cyprus and the Middle East), which appears to represent an important ecological niche for the virus that is likely to represent a continuing source of future BTV incursions into Europe

    Mapping the internal recognition surface of an octanuclear coordination cage using guest libraries

    Get PDF
    Size and shape criteria for guest binding inside the cavity of an octanuclear cubic coordination cage in water have been established using a new fluorescence displacement assay to quantify guest binding. For aliphatic cyclic ketones of increasing size (from C5 to C11), there is a linear relationship between ΔG for guest binding and the guest’s surface area: the change in ΔG for binding is 0.3 kJ mol–1 Å–2, corresponding to 5 kJ mol–1 for each additional CH2 group in the guest, in good agreement with expectations based on hydrophobic desolvation. The highest association constant is K = 1.2 × 106 M–1 for cycloundecanone, whose volume is approximately 50% of the cavity volume; for larger C12 and C13 cyclic ketones, the association constant progressively decreases as the guests become too large. For a series of C10 aliphatic ketones differing in shape but not size, ΔG for guest binding showed no correlation with surface area. These guests are close to the volume limit of the cavity (cf. Rebek’s 55% rule), so the association constant is sensitive to shape complementarity, with small changes in guest structure resulting in large changes in binding affinity. The most flexible members of this series (linear aliphatic ketones) did not bind, whereas the more preorganized cyclic ketones all have association constants of 104–105 M–1. A crystal structure of the cage·cycloundecanone complex shows that the guest carbonyl oxygen is directed into a binding pocket defined by a convergent set of CH groups, which act as weak hydrogen-bond donors, and also shows close contacts between the exterior surface of the disc-shaped guest and the interior surface of the pseudospherical cage cavity despite the slight mismatch in shape

    Ambivalent Incorporation of the Fluorescent Cytosine Analogues tC and tCo by Human DNA Polymerase alpha and Klenow Fragment

    No full text
    Westudied the incorporation of the fluorescent cytidine analogues 1,3-diaza-2-oxophenothiazine (tC) and 1,3-diaza-2-oxophenoxazine (tCo) by human DNA polymerase R and Klenow fragment of DNA polymerase I (Escherichia coli). These tricyclic nucleobases possess the regular hydrogen bonding interface of cytosine but are significantly expanded in size toward the major groove. Despite the size alteration, both DNA polymerases insert dtCTP and dtCoTP with remarkable catalytic efficiency. Polymerization opposite guanine is comparable to the insertion of dCTP, while the insertion opposite adenine is only ∼4-11 times less efficient than the formation of a T-A base pair. Both enzymes readily extend the formed tC(o)-G and tC(o)-A base pairs and can incorporate at least four consecutive nucleotide analogues. Consistent with these results, both DNA polymerases efficiently polymerize dGTP and dATP when tC and tCo are in the template strand. Klenow fragment inserts dGTP with a 4-9-fold higher probability than dATP, while polymerase R favors dGTP over dATP by a factor of 30-65. Overall, the properties of tC(o) as a templating base and as an incoming nucleotide are surprisingly symmetrical and may be universal for A and B family DNA polymerases. This finding suggests that the aptitude for ambivalent base pairing is a consequence of the electronic properties of tC(o). \ua9 2009 American Chemical Society

    Ambivalent Incorporation of the Fluorescent Cytosine Analogues tC and tCo by Human DNA Polymerase alpha and Klenow Fragment

    No full text
    Westudied the incorporation of the fluorescent cytidine analogues 1,3-diaza-2-oxophenothiazine (tC) and 1,3-diaza-2-oxophenoxazine (tCo) by human DNA polymerase R and Klenow fragment of DNA polymerase I (Escherichia coli). These tricyclic nucleobases possess the regular hydrogen bonding interface of cytosine but are significantly expanded in size toward the major groove. Despite the size alteration, both DNA polymerases insert dtCTP and dtCoTP with remarkable catalytic efficiency. Polymerization opposite guanine is comparable to the insertion of dCTP, while the insertion opposite adenine is only ∼4-11 times less efficient than the formation of a T-A base pair. Both enzymes readily extend the formed tC(o)-G and tC(o)-A base pairs and can incorporate at least four consecutive nucleotide analogues. Consistent with these results, both DNA polymerases efficiently polymerize dGTP and dATP when tC and tCo are in the template strand. Klenow fragment inserts dGTP with a 4-9-fold higher probability than dATP, while polymerase R favors dGTP over dATP by a factor of 30-65. Overall, the properties of tC(o) as a templating base and as an incoming nucleotide are surprisingly symmetrical and may be universal for A and B family DNA polymerases. This finding suggests that the aptitude for ambivalent base pairing is a consequence of the electronic properties of tC(o). \ua9 2009 American Chemical Society

    Intangible space: three-dimensional technology in Hugo and IMAX in The Dark Knight

    No full text
    Intangible spaces exist as a particular gathering together of influences, including those of people, things, locations and technologies. They are fascinating for thinking about how technologies influence cinematic space. This discussion of digital three-dimensional (3D) technologies in Hugo and the image maximum (IMAX) format in The Dark Knight uses paratexts to elaborate on this idea. Paratexts released in conjunction with Hugo are used to introduce an understanding of digital 3D cinematic space as something that is built as opposed to recorded. Those of The Dark Knight show film-makers encountering unexpected spaces arising from their use of IMAX technologies. By paying attention to the parameters of intangible space in The Dark Knight, the IMAX format is configured not as seamlessly immersive but as a location that offers multiple points of engagement for an audience. Both these examples demonstrate how thinking in terms of relationality, mediation and entanglement describes a cinematic space given shape by and through technologies
    • …
    corecore