5,926 research outputs found

    Recent Extreme Ultraviolet Solar Spectra and Spectroheliograms

    Get PDF
    Extreme ultraviolet solar spectra and spectroheliogram analyse

    Schiff moment of the Mercury nucleus and the proton dipole moment

    Full text link
    We calculated the contribution of internal nucleon electric dipole moments to the Schiff moment of 199^{199}Hg. The contribution of the proton electric dipole moment was obtained via core polarization effects that were treated in the framework of random phase approximation with effective residual forces. We derived a new upper bound ∣dp∣<5.4×10−24e⋅|d_p|< 5.4\times 10^{-24} e\cdotcm of the proton electric dipole moment.Comment: 4 pages, 2 figures, RevTex

    Is the number of Photons a Classical Invariant?

    Get PDF
    We describe an apparent puzzle in classical electrodynamics and its resolution. It is concerned with the Lorentz invariance of the classical analog of the number of photons.Comment: Revised version, 3 figure

    Interacting Large-Scale Magnetic Fields and Ionised Gas in the W50/SS433 System

    Get PDF
    The W50/SS433 system is an unusual Galactic outflow-driven object of debatable origin. We have used the Australia Telescope Compact Array (ATCA) to observe a new 198 pointing mosaic, covering 3∘×2∘3^\circ \times 2^\circ, and present the highest-sensitivity full-Stokes data of W50 to date using wide-field, wide-band imaging over a 2 GHz bandwidth centred at 2.1 GHz. We also present a complementary Hα\alpha mosaic created using the Isaac Newton Telescope Photometric Hα\alpha Survey of the Northern Galactic Plane (IPHAS). The magnetic structure of W50 is found to be consistent with the prevailing hypothesis that the nebula is a reanimated shell-like supernova remnant (SNR), that has been re-energised by the jets from SS433. We observe strong depolarization effects that correlate with diffuse Hα\alpha emission, likely due to spatially-varying Faraday rotation measure (RM) fluctuations of ≥48\ge48 to 61 rad m−2^{-2} on scales ≤4.5\le4.5 to 6 pc. We also report the discovery of numerous, faint, Hα\alpha filaments that are unambiguously associated with the central region of W50. These thin filaments are suggestive of a SNR's shock emission, and almost all have a radio counterpart. Furthermore, an RM-gradient is detected across the central region of W50, which we interpret as a loop magnetic field with a symmetry axis offset by ≈90∘\approx90^{\circ} to the east-west jet-alignment axis, and implying that the evolutionary processes of both the jets and the SNR must be coupled. A separate RM-gradient is associated with the termination shock in the Eastern ear, which we interpret as a ring-like field located where the shock of the jet interacts with the circumstellar medium. Future optical observations will be able to use the new Hα\alpha filaments to probe the kinematics of the shell of W50, potentially allowing for a definitive experiment on W50's formation history.Comment: Submitted to MNRA

    Study of Glucose Supplementation on Antibiotic Efficacy Against \u3ci\u3eStaphylococcus aureus\u3c/i\u3e

    Get PDF
    Staphylococcus aureus (S. aureus), is a Gram-positive, facultative anaerobic, biofilm-forming bacterium. It is the leading cause of skin and soft tissue infections (SSTIs) in the United States. The public health impact of S. aureus has been increased by the emergence of Methicillin-resistant Staphylococcus aureus. It has also shown intermediate resistance to Vancomycin, which suggests that full resistance may develop. It is known that hyperglycemia (high blood sugar) from diabetes reduces immune system function. Patients with diabetes experience a greater rate of skin and soft tissue infections. This research explores the effect of increasing glucose concentration on S. aureus response to multiple classes of antibiotics to determine whether hyperglycemia could contribute to treatment failure of diabetic S. aureus SSTIs. Our results support the claim that hyperglycemia will not contribute to treatment failure of diabetic SSTIs while working with different classes of antibiotics.https://digitalcommons.odu.edu/gradposters2022_sciences/1014/thumbnail.jp

    Nuclear Magnetic Quadrupole Moments in Single Particle Approximation

    Full text link
    A static magnetic quadrupole moment of a nucleus, induced by T- and P-odd nucleon-nucleon interaction, is investigated in the single-particle approximation. Models are considered allowing for analytical solution. The problem is also treated numerically in a Woods-Saxon potential with spin-orbit interaction. The stability of results is discussed.Comment: LATEX, 9 pages, 1 postscript figure available upon request from "[email protected]". BINP 94-4

    Using nsPEFs to Sensitize MRSA to Vancomycin Treatment

    Get PDF
    Staphylococcus aureus (S. aureus) is a biofilm-forming pathogen. S. aureus treatment is marked by the development of antibiotic resistance. The public health impact has increased since the emergence of methicillin-resistant S. aureus (MRSA), which has started to show intermediate resistance to vancomycin in MRSA. Nano-second pulse electric fields (nsPEFs) are low-energy and high-power electric pulses, which have been suggested to sensitize pathogens to antibiotics by creating transient pores in the cell membrane. Our combinatorial treatment includes nsPEF pre-treatment and vancomycin post-treatment of MRSA cells. Our results show that MRSA log phase cells had the highest susceptibility to vancomycin. Surprisingly, MRSA biofilm cells were more susceptible to vancomycin when compared to MRSA stationary planktonic cells. These results demonstrate that nsPEFs could remove the pathogen’s protective barrier that is caused by biofilms. They also have the potential of increasing the efficacy of current antibiotic treatments against other pathogens that are developing resistance to antibiotics.https://digitalcommons.odu.edu/gradposters2023_gradschool/1005/thumbnail.jp

    Interrelations Between the Neutron's Magnetic Interactions and the Magnetic Aharonov-Bohm Effect

    Get PDF
    It is proved that the phase shift of a polarized neutron interacting with a spatially uniform time-dependent magnetic field, demonstrates the same physical principles as the magnetic Aharonov-Bohm effect. The crucial role of inert objects is explained, thereby proving the quantum mechanical nature of the effect. It is also proved that the nonsimply connectedness of the field-free region is not a profound property of the system and that it cannot be regarded as a sufficient condition for a nonzero phase shift.Comment: 18 pages, 1 postscript figure, Late

    A radio-polarisation and rotation measure study of the Gum Nebula and its environment

    Get PDF
    The Gum Nebula is 36 degree wide shell-like emission nebula at a distance of only 450 pc. It has been hypothesised to be an old supernova remnant, fossil HII region, wind-blown bubble, or combination of multiple objects. Here we investigate the magneto-ionic properties of the nebula using data from recent surveys: radio-continuum data from the NRAO VLA and S-band Parkes All Sky Surveys, and H-alpha data from the Southern H-Alpha Sky Survey Atlas. We model the upper part of the nebula as a spherical shell of ionised gas expanding into the ambient medium. We perform a maximum-likelihood Markov chain Monte-Carlo fit to the NVSS rotation measure data, using the H-halpha data to constrain average electron density in the shell nen_e. Assuming a latitudinal background gradient in RM we find ne=1.3−0.4+0.4cm−3n_e=1.3^{+0.4}_{-0.4} {\rm cm}^{-3}, angular radius ϕouter=22.7−0.1+0.1deg\phi_{\rm outer}=22.7^{+0.1}_{-0.1} {\rm deg}, shell thickness dr=18.5−1.4+1.5pcdr=18.5^{+1.5}_{-1.4} {\rm pc}, ambient magnetic field strength B0=3.9−2.2+4.9μGB_0=3.9^{+4.9}_{-2.2} \mu{\rm G} and warm gas filling factor f=0.3−0.1+0.3f=0.3^{+0.3}_{-0.1}. We constrain the local, small-scale (~260 pc) pitch-angle of the ordered Galactic magnetic field to +7∘≲℘≲+44∘+7^{\circ}\lesssim\wp\lesssim+44^{\circ}, which represents a significant deviation from the median field orientation on kiloparsec scales (~-7.2∘^{\circ}). The moderate compression factor X=6.0\,^{+5.1}_{-2.5} at the edge of the H-alpha shell implies that the 'old supernova remnant' origin is unlikely. Our results support a model of the nebula as a HII region around a wind-blown bubble. Analysis of depolarisation in 2.3 GHz S-PASS data is consistent with this hypothesis and our best-fitting values agree well with previous studies of interstellar bubbles.Comment: 33 pages, 16 figures. Accepted by The Astrophysical Journa
    • …
    corecore