20 research outputs found

    The role of the jaw subdomain of peptidoglycan glycosyltransferases for lipid II polymerization

    Get PDF
    Bacterial peptidoglycan glycosyltransferases (PGT) catalyse the essential polymerization of lipid II into linear glycan chains required for peptidoglycan biosynthesis. The PGT domain is composed of a large head subdomain and a smaller jaw subdomain and can be potently inhibited by the antibiotic moenomycin A (MoeA). We present an X-ray structure of the MoeA-bound Staphylococcus aureus monofunctional PGT enzyme, revealing electron density for a second MoeA bound to the jaw subdomain as well as the PGT donor site. Isothermal titration calorimetry confirms two drug-binding sites with markedly different affinities and positive cooperativity. Hydrophobic cluster analysis suggests that the membrane-interacting surface of the jaw subdomain has structural and physicochemical properties similar to amphipathic cationic Ī±-helical antimicrobial peptides for lipid II recognition and binding. Furthermore, molecular dynamics simulations of the drug-free and -bound forms of the enzyme demonstrate the importance of the jaw subdomain movement for lipid II selection and polymerization process and provide molecular-level insights into the mechanism of peptidoglycan biosynthesis by PGTs

    Structures of heat shock factor trimers bound to DNA

    Get PDF
    Summary: Heat shock factor 1 (HSF1) and 2 (HSF2) play distinct but overlapping regulatory roles in maintaining cellular proteostasis or mediating cell differentiation and development. Upon activation, both HSFs trimerize and bind to heat shock elements (HSEs) present in the promoter region of target genes. Despite structural insights gained from recent studies, structures reflecting the physiological architecture of this transcriptional machinery remains to be determined. Here, we present co-crystal structures of human HSF1 and HSF2 trimers bound to DNA, which reveal a triangular arrangement of the three DNA-binding domains (DBDs) with protein-protein interactions largely mediated by the wing domain. Two structural properties, different flexibility of the wing domain and local DNA conformational changes induced by HSF binding, seem likely to contribute to the subtle differential specificity between HSF1 and HSF2. Besides, two more structures showing DBDs bound to ā€œtwo-siteā€ head-to-head HSEs were determined as additions to the published tail-to-tail dimer-binding structures

    Substrate and Stereochemical Control of Peptidoglycan Cross-Linking by Transpeptidation by Escherichia coli PBP1B

    Get PDF
    Penicillin binding proteins (PBPs) catalyzing transpeptidation reactions that stabilize the peptidoglycan component of the bacterial cell wall are the targets of Ī²-lactams, the most clinically successful antibiotics to date. However, PBP-transpeptidation enzymology has evaded detailed analysis, because of the historical unavailability of kinetically competent assays with physiologically relevant substrates and the previously unappreciated contribution of protein cofactors to PBP activity. By re-engineering peptidoglycan synthesis, we have constructed a continuous spectrophotometric assay for transpeptidation of native or near native peptidoglycan precursors and fragments by Escherichia coli PBP1B, allowing us to (a) identify recognition elements of transpeptidase substrates, (b) reveal a novel mechanism of stereochemical editing within peptidoglycan transpeptidation, (c) assess the impact of peptidoglycan substrates on Ī²-lactam targeting of transpeptidation, and (d) demonstrate that both substrates have to be bound before transpeptidation occurs. The results allow characterization of high molecular weight PBPs as enzymes and not merely the targets of Ī²-lactam acylation

    Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention

    Get PDF
    We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. InĀ vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. InĀ vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression

    Ribosomal RNA Modification Enzymes : Structural and functional studies of two methyltransferases for 23S rRNA modification inĀ Escherichia coli

    No full text
    Escherichia coli ribosomal RNA (rRNA) is post-transcriptionally modified by site-specific enzymes. The role of most modifications is not known and little is known about how these enzymes recognize their target substrates. In this thesis, we have structurally and functionally characterized two S-adenosyl-methionine (SAM) dependent 23S rRNA methyltransferases (MTases) that act during the early stages of ribosome assembly in E. coli. RlmM methylates the 2'O-ribose of C2498 in 23S rRNA. We have solved crystal structures of apo RlmM at 1.9ƅ resolution and of an RlmM-SAM complex at 2.6ƅ resolution. The RlmM structure revealed an N-terminal THUMP domain and a C-terminal catalytic Rossmann-fold MTase domain. A continuous patch of conserved positive charge on the RlmM surface is likely used for RNA substrate recognition. The SAM-binding site is open and shallow, suggesting that the RNA substrate may be required for tight cofactor binding. Further, we have shown RlmM MTase activity on in vitro transcribed 23S rRNA and its domain V. RlmJ methylates the exocyclic N6 atom of A2030 in 23S rRNA. The 1.85ƅ crystal structure of RlmJ revealed a Rossmann-fold MTase domain with an inserted small subdomain unique to the RlmJ family. The 1.95ƅ structure of the RlmJ-SAH-AMP complex revealed that ligand binding induces structural rearrangements in the four loop regions surrounding the active site. The active site of RlmJ is similar to N6-adenine DNA MTases. We have shown RlmJ MTase activity on in vitro transcribed 23S rRNA and a minimal substrate corresponding to helix 72, specific for adenosine. Mutagenesis experiments show that residues Y4, H6, K18 and D164 are critical for catalytic activity. These findings have furthered our understanding of the structure, evolution, substrate recognition and mechanism of rRNA MTases

    Purification, crystallization and preliminary X-ray diffraction analysis of the 23S rRNA methyltransferase RlmJ from Escherichia coli

    Get PDF
    Methyltransferase RlmJ uses the cofactor S-adenosylmethionine to methylate the exocyclic nitrogen N6 of nucleotide A2030 in 23S rRNA during ribosome assembly in Escherichia coli. RlmJ with a C-terminal hexahistidine tag was overexpressed in E. coli and purified as a monomer using Ni2+-affinity and size-exclusion chromatography. The recombinant RlmJ was crystallized using the sitting-drop vapour-diffusion method and a full data set was collected to 1.85 angstrom resolution from a single apo crystal. The crystals belonged to space group P2(1), with unit-cell parameters a = 46.9, b = 77.8, c = 82.5 angstrom, beta = 104 degrees. Data analysis suggested two molecules per asymmetric unit and a Matthews coefficient of 2.20 angstrom(3) Da(-1)

    Structural basis for DNA recognition by the transcription regulator MetR

    No full text
    MetR, a LysR-type transcriptional regulator (LTTR), has been extensively studied owing to its role in the control of methionine biosynthesis in proteobacteria. A MetR homodimer binds to a 24-base-pair operator region of the met genes and specifically recognizes the interrupted palindromic sequence 5'-TGAA-N5-TTCA-3'. Mechanistic details underlying the interaction of MetR with its target DNA at the molecular level remain unknown. In this work, the crystal structure of the DNA-binding domain (DBD) of MetR was determined at 2.16ā€…Ć… resolution. MetR-DBD adopts a winged-helix-turn-helix (wHTH) motif and shares significant fold similarity with the DBD of the LTTR protein BenM. Furthermore, a data-driven macromolecular-docking strategy was used to model the structure of MetR-DBD bound to DNA, which revealed that a bent conformation of DNA is required for the recognition helix Ī±3 and the wing loop of the wHTH motif to interact with the major and minor grooves, respectively. Comparison of the MetR-DBD-DNA complex with the crystal structures of other LTTR-DBD-DNA complexes revealed residues that may confer operator-sequence binding specificity for MetR. Taken together, the results show that MetR-DBD uses a combination of direct base-specific interactions and indirect shape recognition of the promoter to regulate the transcription of met genes

    Crystal structure of RlmM, the 2'O-ribose methyltransferase for C2498 of Escherichia coli 23S rRNA

    Get PDF
    RlmM (YgdE) catalyzes the S-adenosyl methionine (AdoMet)-dependent 2'O methylation of C2498 in 23S ribosomal RNA (rRNA) of Escherichia coli. Previous experiments have shown that RlmM is active on 23S rRNA from an RlmM knockout strain but not on mature 50S subunits from the same strain. Here, we demonstrate RlmM methyltransferase (MTase) activity on in vitro transcribed 23S rRNA and its domain V. We have solved crystal structures of E. coli RlmM at 1.9 ƅ resolution and of an RlmM-AdoMet complex at 2.6 ƅ resolution. RlmM consists of an N-terminal THUMP domain and a C-terminal catalytic Rossmann-like fold MTase domain in a novel arrangement. The catalytic domain of RlmM is closely related to YiiB, TlyA and fibrillarins, with the second K of the catalytic tetrad KDKE shifted by two residues at the C-terminal end of a beta strand compared with most 2'O MTases. The AdoMet-binding site is open and shallow, suggesting that RNA substrate binding may be required to form a conformation needed for catalysis. A continuous surface of conserved positive charge indicates that RlmM uses one side of the two domains and the inter-domain linker to recognize its RNA substrate

    Tolerance of protein folding to a circular permutation in a PDZ domain

    Get PDF
    Circular permutation is a common molecular mechanism for evolution of proteins. However, such re-arrangement of secondary structure connectivity may interfere with the folding mechanism causing accumulation of folding intermediates, which in turn can lead to misfolding. We solved the crystal structure and investigated the folding pathway of a circularly permuted variant of a PDZ domain, SAP97 PDZ2. Our data illustrate how well circular permutation may work as a mechanism for molecular evolution. The circular permutant retains the overall structure and function of the native protein domain. Further, unlike most examples in the literature, this circular permutant displays a folding mechanism that is virtually identical to that of the wild type. This observation contrasts with previous data on the circularly permuted PDZ2 domain from PTP-BL, for which the folding pathway was remarkably affected by the same mutation in sequence connectivity. The different effects of this circular permutation in two homologous proteins show the strong influence of sequence as compared to topology. Circular permutation, when peripheral to the major folding nucleus, may have little effect on folding pathways and could explain why, despite the dramatic change in primary structure, it is frequently tolerated by different protein folds
    corecore