421 research outputs found
Why haven't loose globular clusters collapsed yet?
We report on the discovery of a surprising observed correlation between the
slope of the low-mass stellar global mass function (GMF) of globular clusters
(GCs) and their central concentration parameter c=log(r_t/r_c), i.e. the
logarithmic ratio of tidal and core radii. This result is based on the analysis
of a sample of twenty Galactic GCs with solid GMF measurements from deep HST or
VLT data. All the high-concentration clusters in the sample have a steep GMF,
most likely reflecting their initial mass function. Conversely,
low-concentration clusters tend to have a flatter GMF implying that they have
lost many stars via evaporation or tidal stripping. No GCs are found with a
flat GMF and high central concentration. This finding appears
counter-intuitive, since the same two-body relaxation mechanism that causes
stars to evaporate and the cluster to eventually dissolve should also lead to
higher central density and possibly core-collapse. Therefore, more concentrated
clusters should have lost proportionately more stars and have a shallower GMF
than low concentration clusters, contrary to what is observed. It is possible
that severely depleted GCs have also undergone core collapse and have already
recovered a normal radial density profile. It is, however, more likely that GCs
with a flat GMF have a much denser and smaller core than suggested by their
surface brightness profile and may well be undergoing collapse at present. In
either case, we may have so far seriously underestimated the number of post
core-collapse clusters and many may be lurking in the Milky Way.Comment: Four pages, one figure, accepted for publication in ApJ Letter
The Hot End of Evolutionary Horizontal Branches
In this paper we investigate the hot end of the HB, presenting evolutionary
constraints concerning the CM diagram location and the gravity of hot HB stars.
According to the adopted evolutionary scenario, we predict an upper limit for
HB temperatures of about logTe = 4.45, remarkably cooler than previous
estimates. We find that such a theoretical prescription appears in good
agreement with available observational data concerning both stellar
temperatures and gravities.Comment: postscript file of 10 pages plus 1 tables,rep.1 5 figures will be
  added later as postscript file The tex file and the other two not postscript
  figures are available upon request at [email protected], rep.
Why is the mass function of NGC 6218 flat?
We have used the FORS-1 camera on the VLT to study the main sequence (MS) of
the globular cluster NGC 6218 in the V and R bands. The observations cover an
area of 3.4 x 3.4 around the cluster centre and probe the stellar population
out to the cluster's half-mass radius (r_h ~ 2.2). The colour-magnitude diagram
(CMD) that we derive in this way reveals a narrow and well defined MS extending
down to the 5 sigma detection limit at V~25, or about 6 magnitudes below the
turn-off, corresponding to stars of ~ 0.25 Msolar. The luminosity function (LF)
obtained with these data shows a marked radial gradient, in that the ratio of
lower- and higher-mass stars increases monotonically with radius. The mass
function (MF) measured at the half-mass radius, and as such representative of
the clusters global properties, is surprisingly flat. Over the range 0.4 - 0.8
Msolar, the number of stars per unit mass follows a power-law distribution of
the type dN/dm \propto m^{0}, where, for comparison, Salpeter's IMF would be
dN/dm \propto m^{-2.35}. We expect that such a flat MF does not represent the
cluster's IMF but is the result of severe tidal stripping of the stars from the
cluster due to its interaction with the Galaxy's gravitational field. Our
results cannot be reconciled with the predictions of recent theoretical models
that imply a relatively insignificant loss of stars from NGC 6218 as measured
by its expected very long time to disruption. They are more consistent with the
orbital parameters based on the Hipparcos reference system that imply a much
higher degree of interaction of this cluster with the Galaxy than assumed by
those models. Our results indicate that, if the orbit of a cluster is known,
the slope of its MF could be useful in discriminating between the various
models of the Galactic potential.Comment: 11 pages, 7 figures, accepted for publication in Astronomy and
  Astrophysic
The global mass function of M15
Data obtained with the NICMOS instrument on board the Hubble Space Telescope
(HST) have been used to determine the H-band luminosity function (LF) and mass
function (MF) of three stellar fields in the globular cluster M15, located ~7'
from the cluster centre. The data confirm that the cluster MF has a
characteristic mass of ~0.3 Msolar, as obtained by Paresce & De Marchi (2000)
for a stellar field at 4.6' from the centre. By combining the present data with
those published by other authors for various radial distances (near the centre,
at 20" and at 4.6'), we have studied the radial variation of the LF due to the
effects of mass segregation and derived the global mass function (GMF) using
the Michie-King approach. The model that simultaneously best fits the LF at
various locations, the surface brightness profile and the velocity dispersion
profile suggests that the GMF should resemble a segmented power-law with the
following indices: x ~ 0.8 for stars more massive than 0.8 Msolar, x ~ 0.9 for
0.3 - 0.8 Msolar and x ~ -2.2 at smaller masses (Salpeter's IMF would have
x=1.35). The best fitting model also suggests that the cluster mass is ~5.4
10^5 Msolar and that the mass-to-light ratio is on average M/L_V ~ 2.1, with
M/L_V ~ 3.7 in the core. A large amount of mass (~ 44 %) is found in the
cluster core in the form of stellar heavy remnants, which may be sufficient to
explain the mass segregation in M15 without invoking the presence of an
intermediate-mass black hole.Comment: 12 pages, 10 figures, accepted for publication in A&
The Mass Function of Main Sequence Stars in NGC6397 from Near IR and Optical High Resolution HST Observations
We have investigated the properties of the stellar mass function in the
globular cluster NGC6397 using a large set of HST observations that include
WFPC2 images in V and I, obtained at ~4' and 10' radial distances, and a series
of deep images in the J and H bands obtained with the NIC2 and NIC3 cameras of
NICMOS pointed to regions located ~4.5' and ~3.2' from the center. These
observations span the region from ~1 to ~3 times the cluster's half-light
radius. All luminosity functions, derived from color magniutde diagrams,
increase with decreasing luminosity up to a peak at M_I~8.5 or M_H~7 and then
precipitously drop well before photometric incompleteness becomes significant.
Within the observational uncertainties, at M_I~12 or M_H~10.5 (~0.09 Msun) the
luminosity functions are compatible with zero. By applying the best available
mass- luminosity relation appropriate to the metallicity of NGC6397 to both the
optical and IR data, we obtain a mass function that shows a break in slope at
\~0.3 Msun. No single exponent power-law distribution is compatible with these
data, regardless of the value of the exponent. We find that a dynamical model
of the cluster can simultaneously reproduce all the luminosity functions
observed throughout the cluster only if the IMF rises as m**-1.6 in the range
0.8-0.3 Msun and then drops as m**0.2 below ~0.3 Msun. Adopting a more physical
log-normal distribution for the IMF, all these data taken together imply a best
fit distribution with characteristic mass m_c~0.3 and sigma~1.8.Comment: 18 pages, 6 figures (ps). Accepted for publication in Ap
- …
