835 research outputs found

    Unified model of loop quantum gravity and matter

    Full text link
    We reconsider the unified model of gravitation and Yang--Mills interactions proposed by Chakraborty and Peld\'an, in the light of recent formal developments in loop quantum gravity. In particular, we show that one can promote the Hamiltonian constraint of the unified model to a well defined anomaly-free quantum operator using the techniques introduced by Thiemann, at least for the Euclidean theory. The Lorentzian version of the model can be consistently constructed, but at the moment appears to yield a correct weak field theory only under restrictive assumptions, and its quantization appears problematic.Comment: 4 pages, dedicated to Michael P. Ryan on the occasion of his sixtieth birthda

    The Richtmyer–Meshkov instability in magnetohydrodynamics

    Get PDF
    In ideal magnetohydrodynamics (MHD), the Richtmyer–Meshkov instability can be suppressed by the presence of a magnetic field. The interface still undergoes some growth, but this is bounded for a finite magnetic field. A model for this flow has been developed by considering the stability of an impulsively accelerated, sinusoidally perturbed density interface in the presence of a magnetic field that is parallel to the acceleration. This was accomplished by analytically solving the linearized initial value problem in the framework of ideal incompressible MHD. To assess the performance of the model, its predictions are compared to results obtained from numerical simulation of impulse driven linearized, shock driven linearized, and nonlinear compressible MHD for a variety of cases. It is shown that the analytical linear model collapses the data from the simulations well. The predicted interface behavior well approximates that seen in compressible linearized simulations when the shock strength, magnetic field strength, and perturbation amplitude are small. For such cases, the agreement with interface behavior that occurs in nonlinear simulations is also reasonable. The effects of increasing shock strength, magnetic field strength, and perturbation amplitude on both the flow and the performance of the model are investigated. This results in a detailed exposition of the features and behavior of the MHD Richtmyer–Meshkov flow. For strong shocks, large initial perturbation amplitudes, and strong magnetic fields, the linear model may give a rough estimate of the interface behavior, but it is not quantitatively accurate. In all cases examined the accuracy of the model is quantified and the flow physics underlying any discrepancies is examine

    Consistent and mimetic discretizations in general relativity

    Get PDF
    A discretization of a continuum theory with constraints or conserved quantities is called mimetic if it mirrors the conserved laws or constraints of the continuum theory at the discrete level. Such discretizations have been found useful in continuum mechanics and in electromagnetism. We have recently introduced a new technique for discretizing constrained theories. The technique yields discretizations that are consistent, in the sense that the constraints and evolution equations can be solved simultaneously, but it cannot be considered mimetic since it achieves consistency by determining the Lagrange multipliers. In this paper we would like to show that when applied to general relativity linearized around a Minkowski background the technique yields a discretization that is mimetic in the traditional sense of the word. We show this using the traditional metric variables and also the Ashtekar new variables, but in the latter case we restrict ourselves to the Euclidean case. We also argue that there appear to exist conceptual difficulties to the construction of a mimetic formulation of the full Einstein equations, and suggest that the new discretization scheme can provide an alternative that is nevertheless close in spirit to the traditional mimetic formulations.Comment: 14 pages, Revtex, no figures, final version to appear in JM

    A low-numerical dissipation, patch-based adaptive-mesh-refinement method for large-eddy simulation of compressible flows

    Get PDF
    This paper describes a hybrid finite-difference method for the large-eddy simulation of compressible flows with low-numerical dissipation and structured adaptive mesh refinement (SAMR). A conservative flux-based approach is described with an explicit centered scheme used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. Three-dimensional numerical simulations of a Richtmyer-Meshkov instability are presented

    Large quantum gravity effects: backreaction on matter

    Get PDF
    We reexamine the large quantum gravity effects discovered by Ashtekar in the context of 2+1 dimensional gravity coupled to matter. We study an alternative one-parameter family of coherent states of the theory in which the large quantum gravity effects on the metric can be diminished, at the expense of losing coherence in the matter sector. Which set of states is the one that occurs in nature will determine if the large quantum gravity effects are actually observable as wild fluctuations of the metric or rapid loss of coherence of matter fields

    Making classical and quantum canonical general relativity computable through a power series expansion in the inverse cosmological constant

    Get PDF
    We consider general relativity with a cosmological constant as a perturbative expansion around a completely solvable diffeomorphism invariant field theory. This theory is the Λ→∞\Lambda\to\infty limit of general relativity. This allows an explicit perturbative computational setup in which the quantum states of the theory and the classical observables can be explicitly computed. The zeroth order corresponds to highly degenerate space-times with vanishing volume. Perturbations give rise to space-times with non-vanishing volumes in a natural way. The spectrum of area- and volume-related observables constructed by coupling the theory to matter can be directly assessed. An unexpected relationship arises at a quantum level between the discrete spectrum of the volume operator and the allowed values of the cosmological constant

    Consistent discretizations as a road to Quantum Gravity

    Get PDF
    Consistent discretizations: the basic idea There has long been the hope that lattice methods could be used as a non-perturbative approach to Quantum Gravity. This is in part based on the fact that lattice methods have been quite successful in the treatment of quantum chromodynamics. However, one needs to recall that one of the appeals of lattice methods in QCD is that they are gauge invariant regularization methods. In the gravitational context this is not the case. As soon as one discretizes space-time one breaks the invariance under diffeomorphisms, the symmetry of most gravitational theories of interest. As such, lattice methods in the gravitational context face unique challenges. For instance, in the path integral context, since the lattices break some of the symmetries of the theory, this may complicate the use of the Fadeev–Popov technique. In the canonical approach if one discretizes the constraints and equations of motion, the resulting discrete equations are inconsistent: they cannot be solved simultaneously. A related problem is that the discretized constraints fail to close a constraint algebra. To address these problems we have proposed a different methodology for discretizing gravitational theories (or to use a different terminology “to put gravity on the lattice”). The methodology is related to a discretization technique that has existed for a while in the context of unconstrained theories called “variational integrators”. In a nutshell, the technique consists in discretizing the action of the theory and working from it the discrete equations of motion

    A note on the forced Burgers equation

    Full text link
    We obtain the exact solution for the Burgers equation with a time dependent forcing, which depends linearly on the spatial coordinate. For the case of a stochastic time dependence an exact expression for the joint probability distribution for the velocity fields at multiple spatial points is obtained. A connection with stretched vortices in hydrodynamic flows is discussed.Comment: 10 page
    • 

    corecore