2,360 research outputs found

    Seed-Eating Birds

    Get PDF

    A comparison of two central difference schemes for solving the Navier-Stokes equations

    Get PDF
    Five viscous transonic airfoil cases were computed by two significantly different computational fluid dynamics codes: An explicit finite-volume algorithm with multigrid, and an implicit finite-difference approximate-factorization method with Eigenvector diagonalization. Both methods are described in detail, and their performance on the test cases is compared. The codes utilized the same grids, turbulence model, and computer to provide the truest test of the algorithms. The two approaches produce very similar results, which, for attached flows, also agree well with experimental results; however, the explicit code is considerably faster

    Evaluation of the microbial growth response to inorganic nanoparticles

    Get PDF
    In order to enhance the utilization of inorganic nanoparticles in biological systems, it is important to develop a fundamental understanding of the influence they have on cellular health and function. Experiments were conducted to test silica, silica/iron oxide, and gold nanoparticles for their effects on the growth and activity of Escherichia coli (E. coli). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to characterize the morphology and quantify size distribution of the nanoparticles, respectively. TEM was also used to verify the interactions between composite iron oxide nanoparticles and E. coli. The results from DLS indicated that the inorganic nanoparticles formed small aggregates in the growth media. Growth studies measured the influence of the nanoparticles on cell proliferation at various concentrations, showing that the growth of E. coli in media containing the nanoparticles indicated no overt signs of toxicity

    Boundary Condition Study for the Juncture Flow Experiment in the NASA Langley 14x22-Foot Subsonic Wind Tunnel

    Get PDF
    Because future wind tunnel tests associated with the NASA Juncture Flow project are being designed for the purpose of CFD validation, considerable effort is going into the characterization of the wind tunnel boundary conditions, particularly at inflow. This is important not only because wind tunnel flowfield nonuniformities can play a role in integrated testing uncertainties, but also because the better the boundary conditions are known, the better CFD can accurately represent the experiment. This paper describes recent investigative wind tunnel tests involving two methods to measure and characterize the oncoming flow in the NASA Langley 14- by 22-Foot Subsonic Tunnel. The features of each method, as well as some of their pros and cons, are highlighted. Boundary conditions and modeling tactics currently used by CFD for empty-tunnel simulations are also described, and some results using three different CFD codes are shown. Preliminary CFD parametric studies associated with the Juncture Flow model are summarized, to determine sensitivities of the flow near the wing-body juncture region of the model to a variety of modeling decisions

    Characteristics of Mantle Fabrics beneath the South-Central United States: Constraints from Shear-Wave Splitting Measurements

    Get PDF
    New shear-wave splitting measurements at permanent broadband seismic stations in the south-central United States reveal the orientation and degree of polarization of mantle fabrics, and provide constraints on models for the formation of these fabrics. For stations on the stable North American craton, correspondence between observed polarization direction of the fast wave and the trend of Proterozoic and Paleozoic structures associated with rifts and orogenic belts implies a lithospheric origin for the observed anisotropy. The largest splitting times (up to 1.6 s) are observed at stations located in the ocean-continent transition zone, in which the fast directions are parallel to the Gulf of Mexico continental margin. The parallelism and the geometry of the keel of the craton beneath the study area suggest that asthenospheric flow around the keel of the North American craton, lithospheric fabrics developed during Mesozoic rifting, or a combination of these factors are responsible for the observed anisotropy on stations above the transitional crust

    Automated Grid Refinement Using Feature Detection

    Full text link

    A gamma- and X-ray detector for cryogenic, high magnetic field applications

    Full text link
    As part of an experiment to measure the spectrum of photons emitted in beta-decay of the free neutron, we developed and operated a detector consisting of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs). The detector was operated near liquid nitrogen temperature in the bore of a superconducting magnet and registered photons with energies from 5 keV to 1000 keV. To enlarge the detection range, we also directly detected soft X-rays with energies between 0.2 keV and 20 keV with three large area APDs. The construction and operation of the detector is presented, as well as information on operation of APDs at cryogenic temperatures

    Ecological equivalence: a realistic assumption for niche theory as a testable alternative to neutral theory

    Get PDF
    Hubbell's 2001 neutral theory unifies biodiversity and biogeography by modelling steady-state distributions of species richness and abundances across spatio-temporal scales. Accurate predictions have issued from its core premise that all species have identical vital rates. Yet no ecologist believes that species are identical in reality. Here I explain this paradox in terms of the ecological equivalence that species must achieve at their coexistence equilibrium, defined by zero net fitness for all regardless of intrinsic differences between them. I show that the distinction of realised from intrinsic vital rates is crucial to evaluating community resilience. An analysis of competitive interactions reveals how zero-sum patterns of abundance emerge for species with contrasting life-history traits as for identical species. I develop a stochastic model to simulate community assembly from a random drift of invasions sustaining the dynamics of recruitment following deaths and extinctions. Species are allocated identical intrinsic vital rates for neutral dynamics, or random intrinsic vital rates and competitive abilities for niche dynamics either on a continuous scale or between dominant-fugitive extremes. Resulting communities have steady-state distributions of the same type for more or less extremely differentiated species as for identical species. All produce negatively skewed log-normal distributions of species abundance, zero-sum relationships of total abundance to area, and Arrhenius relationships of species to area. Intrinsically identical species nevertheless support fewer total individuals, because their densities impact as strongly on each other as on themselves. Truly neutral communities have measurably lower abundance/area and higher species/abundance ratios. Neutral scenarios can be parameterized as null hypotheses for testing competitive release, which is a sure signal of niche dynamics. Ignoring the true strength of interactions between and within species risks a substantial misrepresentation of community resilience to habitat los
    • …
    corecore