
NASA Technical Memorandum 102815

A Comparison of Two Central
Difference Schemes for Solving
the Navier-Stokes Equations
C. M. Maksymiuk, Ames Research Center, Moffett Field, California
R. C. Swanson, Langley Research Center, Hampton, Virginia
T. H. Pulliam, Ames Research Center, Moffett Field, California

July 1990

N/kS/_
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

https://ntrs.nasa.gov/search.jsp?R=19900018338 2020-03-19T21:24:20+00:00Z





SUMMARY

Five viscous transonic airfoil cases have been computed by two significantly different compu-

tational fluid dynamics codes: an explicit finite-volume algorithm with multigfid, and an implicit

finite-difference approximate-factorization method with eigenvector diagonalization. Both methods

are described in detail, and their performance on the test cases is compared. The codes utilized the

same grids, turbulence model, and computer to provide the truest test of the algorithms. The two ap-

proaches produce very similar results, which, for attached flows, also agree well with experimental

results; however, the explicit code is considerably faster.

INTRODUCTION

The development of algorithms for the Navier-Stokes equations has proceeded along two distinct

but intertwined paths: explicit methods, which are less computationally intensive but are restricted by

stability considerations to small time-steps, and implicit methods, which trade a larger operation count

for greater stability. Jameson et al. pioneered the use of an explicit modified Runge-Kutta method for

the Euler equations (ref. 1). With the enhancements of multigrid, implicit residual smoothing, and

local time-stepping, the method was practical for application to the Navier-Stokes equations. Analo-

gously, Beam and Warming developed an implicit approximate-factorization scheme which was useful

for reducing the work of a two- or three-dimensional implicit operator to a series of one-dimensional

operators (ref. 2). Enhanced by local time-stepping, eigenvector diagonalization, and grid sequencing,

which applies some of the ideas of multigfid, this algorithm also proved applicable to the Navier-Stokes

equations.

Both methods have been rigorously tested against experimental data for a variety of flow condi-

tions, and both are in widespread use today in research and practical applications. The purpose of this

study is to compare the methods with regard to their capability to compute transonic viscous airfoil

flows. Computations were performed using two codes: FLOMG, which is based on Jameson's multi-

grid algorithm, and ARC2D, which uses the Beam-Warming implicit method. Since computational

results can be sensitive to various features of the grids, both codes used the same grids, three of which

were generated for each airfoil. To provide the most controlled test of the methods, both codes also

used the same turbulence model and computer. Five cases, with conditions ranging from subcritical

attached flow to strong shock-induced separation, were computed. Results include plots of pressure

coefficient, skin-friction coefficient, boundary-layer profiles, and displacement thickness, as well as

tabulated force coefficients and convergence times. Comparisons with experimental data are made
when data are available.



NAVIER-STOKES EQUATIONS

The nondimensional, strong-conservation-law form of the two-dimensional Navier-Stokes equa-
tions in Cartesian coordinates is

&Q + O=E + OvF = Re -1 ( OxE_ + OvF_) (i)

where
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and Re is the Reynolds number, p is the density, u and v are the Cartesian velocities, and e is the total

energy, and where

rx= = #(4u= - 2v_)/3

r,_ =/_( u v + v.,)

r_ = #(-2u= + 4%)/3 (2c)

f4 = urx= + vr=_ + #Pr-l(ol - 1)-10=a 2

g4 = ur=y + vr_ + laPr-l(7 - 1)-la_a 2

Here Pr is the Prandtl number, and a is the speed of sound (a 2 = 7P/P for ideal fluids).

Pressure is related to the conservative flow variables Q by the equation of state,

1 2 v 2 ]p=(q,-1) e-_p(u + ) (3)

where qt is the ratio of specific heats, generally taken as 1.4, and # is the dynamic viscosity, which is

made up of the molecular viscosity plus a computed turbulent eddy viscosity.

The choice of nondimensional parameters is arbitrary. Here we have chosen to scale the variables

as

v_£_ v e, , _ g = _ (4a)
Poo a_ a_ ' p_a 2

where c<_refers to free-stream quantities. Assuming a reference length l (usually taken as some char-
acteristic physical length such as chord of an airfoil), time t scales as t = taft. The viscous coefficients
scale as

"fi = _, Re= _p_la_ (4b)
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Note that Re uses a_ and, therefore, Re based on u_ (the usual case for experimentally given Reynolds

number) must be scaled by M,,, = uo,/a,,o. For the remainder of this development, the overtilde will

be dropped for simplicity.

Coordinate Transformation

For a finite-difference solution on a body-fitted grid, the equations are transformed as described

in references 3 and 4. The Navier-Stokes equations written in generalized curvilinear coordinates ((,

r/, t) are

a.O+ +a,,?= R -'ta L +a,,L] (5)

where

' I pvU+( v J' £=
L U(e + p) - (tp

pV

pu V + rlxp

pvV + rl_p

V(e + p) - rhp

(6)

with j-I = (x_y,7 _ :rny_) representing the metric Jacobian and U = (t + (zu + (uv and V = rh + r/zu +

r/vv representing the contravariant velocities. The viscous flux terms are/_ = j-1 ((xE_ + (z,F_) and

F_ = J-1(nxE _+ nvF_).

The stress terms, such as rx:_, are also transformed in terms of the _- and r/-derivatives where

"rxy =

_ =

f4=

g4 =

/_[4((=u_ + rh%) - 2((_v_ + r/u%)]/3

/*[-2(_¢.u{ + r/x%) + 4({_v{ + r/_%)]/3

ur.= + vrz_ + #pr-l(q - 1)-I({=69{a 2 + r&tgna 2)

ur._ + vrll _ + laPr-l ( 7- 1)-l({_oq(a 2 + r/yoqna 2)

(7)

Thin-Layer Approximation

In high-Reynolds-number viscous flows, the effects of viscosity are concentrated near rigid bound-

aries and in wake regions. Typical grids have finer grid spacing in directions nearly normal to the

surfaces and coarser grid spacing along the surface. On such grids, the viscous terms associated with

derivatives along the body will not be resolved, and in most cases for attached and mildly separated

flows these terms are negligible. The terms associated with the normal direction will be resolved for

sufficiently fine-grid spacing, and these are substantial terms.

The thin-layer approximation is similar in philosophy to, but not the same as, the boundary-layer

theory, for which appropriate scaling arguments show that streamwise components of the viscous terms

can be neglected relative to the normal terms. In the thin-layer approximation, the normal momentum

equation is solved and pressure can vary through the boundary layer.



Applying the thin-layer approximation to equations (5)-(7), in which all the viscous terms associ-

ated with _-derivatives are neglected, the following system of equations is obtained:

(8)

where

with

9= j-1

0

_/zml + 7/vm2

t/zm2 + Bvm3

_x(uml + vm2 + m4) + ¢/v(um2 + vm3 + m5)

rnl = #(4_xu, - 2%%)/3

m2 = #(%u, + _7_v,_)

rn3 = #(-2r/xu, + 4%%)/3

ra4 = #Pr -1 (ff - 1)-1 r/z 0,1(a2)

ms = #Pr-l(7- 1)-1%On(a 2)

(9a)

(9b)

Turbulence Model

The algebraic mixing length model of Baldwin and Lomax (ref. 5) is included to approximate

the effects of turbulence. It is a two-layer model in which the inner layer is governed by the Prandtl

mixing length with Van Driest damping; the outer layer follows the Clauser approximation. Computed

vorticity is used in defining the reference mixing length required for the outer layer. In order to improve

the numerical compatibility of the Baldwin-Lomax model, two simple modifications are made. First, in

the Van Driest damping factor, the shear stress at the wall is replaced with the maximum local laminar

shear stress. This generally prevents the numerical difficulties caused by vanishing shear stress at

separation. Second, the constant C,_t_, which is used in the outer-layer viscosity formulation, is changed

from 0.25 to 1.0. For some transonic flows, convergence may not be possible if this value is too low,
a result of motion of the shock wave.

NUMERICAL ALGORITHM FOR FLOMG RESULTS

The FLOMG computations were performed using a Navier-Stokes code developed by Swanson

and Turkel, which is based on the explicit multistage time-stepping schemes of references 1 and 6. This

class of schemes is currently in widespread use for solving the Euler equations of gas dynamics. In

references 7-10, these schemes were extended to allow the solution of the compressible Navier-Stokes

equations. Significant improvements in numerical efficiency were introduced in references 11-13. The

basic ideas developed in two dimensions were extended to three dimensions in references 14-16. In

the code of Swanson and Turkel, a cell-centered, finite-volume method is employed to obtain differ-

ence approximations for the flow equations. Such a method provides flexibility in treating arbitrary
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geometries and different grid topologies, since no special treatment is required in the vicinity of singu-

lar points or lines. The scheme is second-order accurate in space for sufficiently smooth meshes (see

ref. 13 for a definition of "sufficiently smooth"). Artificial dissipation terms with adaptive coefficients

are included for stability, convergence, and shock capturing. The spatial and temporal differencing

are decoupled. Thus, the numerical scheme is independent of time-step and amenable to steady-state

convergence-acceleration techniques. These methods include local time-stepping (a preconditioning

for the system of difference equations); variable coefficient, implicit residual smoothing; and multigrid.

The latter two methods were designed to be effective on the highly stretched meshes encountered in

viscous flow problems; they also work quite well on typical meshes for inviscid flows.

Spatial Discretization

A finite-volume approach is applied to discretize the equations of motion. The computational

domain is divided into quadrilateral cells, fixed in time, and for each cell the governing equations are

written in integral form as follows,

Of£Qdxdy+foOt a(Edy-Fdx)=Re-lfoa(E_dy-F_dx)
(10)

where fl is a generic cell and O_ its boundary.

A cell-centered type ofdiscretization is used, and the line integral of equation (10) is approximated

with the midpoint rule. Thus, taking Qid as a cell-averaged solution vector, equation (10) can be written
in semidiscrete form as

d

+ £@,i = o (11)

where/2 is a discrete operator defined by

£ = £0 + £D-- £AD

with the subscripts C, D, and AD referring to convection, diffusion, and artificial dissipation, re-

spectively. The convective fluxes at the cell faces are obtained by an averaging process. Moreover,

summing over the cell faces,
4

£cQ,j = E It" ffl (12)
l=l

with the flux tensor, which is associated with convection, given by

and for each cell face l, the directed area ff_ is expressed as St = ( A y) t e'x - ( A x) __'_, where the proper

signs of ( A x) t and (A y) t produce an outward normal to the cell face. The augmented convective flux
tensor is evaluated as
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Figure 1. Finite-volume discretization.

T
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(P,w)t = _'(P- + P+)t' ((P_7)=_g)t = 2(P-V - + p+V +)t

and the minus and plus superscripts mean that one quantity is determined at the center of the cell of

interest and the other at the center of the adjacent cell on edge l, and _7 is the velocity vector. The

spatial derivatives necessary to compute the viscous terms are evaluated by means of Green's theorem.

For example, consider the arbitrary cell _ (ABCD) in figure 1. The contributions u= and u_ to the

viscous flux across each cell face (i.e., BC) are approximated with their mean values using

If n, u=dgl' = foa, udy

f fa, uud_l' = - fan, udx

(14)

where f_' is an auxiliary cell (A'B'C'D' for face BC in fig. 1). The values of u at B and C required

for the cell-boundary integrals in equation (14) are obtained by a simple average of the values of u at

the four surrounding cells. In a similar manner, v= and vv are computed. Additional details for finite-

volume treatment of viscous stresses and heat-conduction terms are given in reference 7, which also

gives a thin-layer formulation, and in reference 9.
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Artificial Dissipation

For inviscid flows the basic finite-volume scheme just described contains no dissipative terms.

In order to prevent odd-even point decoupling and oscillations near shock waves or stagnation points,

artificial dissipation terms are added to the governing discrete equations. Moreover, the introduction

of appropriate dissipation in the vicinity of shocks allows an entropy condition to be satisfied, and thus

guarantees the uniqueness of weak solutions. For viscous flows, dissipative properties are present ow-

ing to diffusive terms; however, due to nonlinear effects the physical dissipation may not be sufficient

to guarantee stability, especially in the case of the highly stretched meshes generally used to resolve

the steep gradients in shear layers. Thus, to maintain the stability and robustness of the numerical

procedure, artificial dissipation is also included in viscous regions.

The artificial dissipation model used in the scheme is basically the one developed by Jameson et al.

(ref. 1). This nonlinear model is a blending of second and fourth differences. The quantity F-.AnQij in

equation (11) is defined as

caoQ. - + - (15)

where (4, _1) are arbitrary curvilinear coordinates,

D_Q,j = V_(X_+_j (2) .. (16)

(4) (17)

and where i,j are indices (for a cell center) associated with the 4- and r/-directions, and A_, V¢ are

forward and backward difference operators in the f-direction. Following references 11 and 12, the

variable scaling factor is defined as

1

),._j = _-[(_.£)ij + (),£)i+l,j] (18)

where

(),_)ij = ¢ij(r) (),{)i,j

(19)

= 1 + reid

and where r is the ratio ,_,7/_,_, _,_ and )_,7are the scaled spectral radii of the flux Jacobian matrices
(associated with the 4- and _-directions) for the Euler equations, and the exponent _ is generally taken

to be 2/3. The spectral radii for the _- and rl-directions are given by

2= luy,7- vz, I+ a + z,7 (20)

(21)
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anda is the speed of sound. The coefficients e¢2) and e (4) use the pressure as a sensor for shocks and

stagnation points, and they are defined as

(2) = /_(2) max( vii, Vi+lj,
ei+ _j vi-_ j, v_+2j)

(22)

pi-lj -- 2pij + Pi+lj [ (23)
Vi d

Pi-lj + 2pij + Pi+lj I
_(2) x 1

_(4) = max[O,(_ (4) -- _i+_j)j (24)

where typical values for the constants _(2) and _(4) are in the ranges 1/4 to 1/2 and 1/64 to 1/32,

respectively. For the normal direction ('7), the dissipation contributions are defined in a similar way,

except
(_n)id = ¢ij(r-l) ()_n)ij (25)

The treatment of the artificial dissipation must be modified at the boundaries of the physical do-

main. In the case of the fourth-difference dissipation, the standard five-point difference stencil must be

replaced at the first two interior mesh cells. This means that one-sided or one-sided biased stencils are

used at these cells. The dissipative character of the artificial terms is important because it influences

both stability and accuracy. For example, if the dissipation is too large at a solid boundary, an artificial

boundary layer is created in an inviscid flow, and the effective Reynolds number for a viscous flow is

altered. To improve accuracy at the wall boundaries of viscous flows, where gradients are steep be-

cause of physical boundary layers, the usual fourth-difference stencils are changed in this dissipation

model.

Let the total dissipation for a mesh cell, in the direction represented by the index j, be denoted by

dj. For simplicity, assume that ),e (4) = 1. Then,

dj = - afj_ (26)

where the dissipative flux

dfj+ = (AQ)j+ - 2(ao)j+ + (27)

and thus

dj = (AQ)j+} - 3(AQ)j+_ + 3(AQ)j__r - (AQ)j___ (28)

with the index i for A Q suppressed for convenience. Consider the first two interior cells adjacent to a

solid boundary, as depicted in figure 2. If

(aO) = (AQ) = (aq) (29)

then equation (28) gives
d2 = Q4 - 2 Q3 + Q2

d3 = Q5 - 4Q4 + 5Q3 - 2Q2

(30)

(31)



j=3

j=2
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j = 7/2

j = 5/2

/ / j=3/2

j = 1/2

Figure 2. Boundary point dissipation.

These boundary stencils are fairly standard ones, and they result in a nonpositive definite dissipation

matrix for the system of difference equations (ref. 17). An alternative form, which has reduced the

sensitivity to solid surface normal mesh spacing for turbulent flow calculations without compromising

stability or convergence, is given by

and

= -

d2 =Q4-3Q3 +3Q2-QI

d3 =QS-4Q4 +6Q3-4Q2 +QI

(32)

(33)

(34)

Time-Stepping Scheme

The system of ordinary differential equations of equation (11) is advanced in time toward the

steady-state solution with a five-stage Runge-Kutta scheme. This scheme is second-order accurate in

time. At the (m + 1) st stage,

Q(,_+I) = (9!o.) At/dr,. ,._(m)
id

m

+ £D(,_i,j

n=O

(35)

O(0) n = Q!5) is the solution at the newwhere -_id = Qid is the discrete solution at time-level n; Q,_I ,,;

time-level, n + 1 ; o_,_+1 are the coefficients of the scheme; At is the time-step; g2 is the area of the
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meshcell; and %,,, are the weighting factors of the artificial dissipation. The coefficients o_,n+t are

determined such that the scheme has the largest possible hyperbolic stability limit. An appropriate set

of coefficients is given by

1 1 3 1
o_5 = 1 (36)

4' a2= , a3 = , a4 = _-,

This scheme also exhibits good high-frequency damping behavior, which is crucial for a rapidly conver-

gent multigrid method (to be described in a subsequent section). In order to establish a good parabolic

stability, the artificial dissipation terms are evaluated on the first, third, and fifth stages. The weighting

factors 7,,,,+ must satisfy the condition

E 7,,,,, = 1 (37)

They are defined as follows:

700 = 1,

7t0 = 1, 711 = 0,

720 = (1 --_3), 721 = O,

730 = (1 --_3), 731 = 0,

740 = ( 1 - if3)( 1 - 75),

722 = _3,

"/32 = _3, 733 = 0,

74t = 0, 742 = 73 ( 1 - 75 ), 743 = 0, 744 = 75

(38)

where 73 = 0.56, and 75 = 0.44. As indicated in equation (35), the physical viscous terms are

computed only on the first stage and are frozen for the remaining stages. The single evaluation appears

to have no significant effect on the stability of the scheme and allows a reduction in computational

effort.

Convergence Acceleration Techniques

Three methods are employed to accelerate convergence of the basic explicit time-stepping scheme.

These techniques are: (1) local time-stepping; (2) residual smoothing; and (3) multigrid. With local

time-stepping, the solution at each mesh point is advanced at the maximum A t allowed by stabil-

ity. Both convection and diffusion limits are included in the At computation (see ref. 18). Implicit

smoothing of the residuals is used to extend the stability range of the basic time-stepping scheme. For

two-dimensional problems, the residual smoothing can be applied in the form

(I ,/3'(V_z_)(1 - (_)= "P,L!"9.)- - 3,N,_)'R.+j .-,j (39)

- _(,n)
where the residual _ij is defined by

R,!'T'.) Atid(_ _(,.__) ,. ,.-,(o)_AD(,n)) m= 1 5
+j = Olrn _ _C%_ij + i'Dt'_ij , '

(40)

and is computed in the Runge-Kutta stage rn, AD ('_) is the total artificial dissipation at stage m, and

.p,(m) is the final residual at stage m after the sequence of smoothings in the 4- and r/-direcdons. Theid

10



coefficients/3( and fin are variable and are functions of the spectral radii _ and )_n" Based on the
unpublished work of Swanson, they can be written as follows:

/3_=max _- N" l+¢rrg -1 ,0

13,1= max , r_l - 1 ,0

(41)

where the ratio r,7_ = ),,_/,k_, and the quantity N/N* is the ratio of the Courant-Friedrichs-Lewy number

of the smoothed scheme to that of the basic explicit scheme (usually having a value of 2). From a

linear stability analysis, the scheme with these coefficients is stable for all mesh-cell aspect ratios when

the parameter ¢, _ 0.125 and N/N* is sufficiently large. The practical limitation on the Courant

number is due to the requirement for effective high-frequency damping. For large N/N*, the high-

frequency damping of the scheme vanishes. An alternative form for these coefficients was introduced

by Martinelli and Jameson (ref. 12). Similar performance of the two forms has been observed for typical

viscous flow meshes. However, significant improvement in convergence rate has been obtained with

standard inviscid meshes using the form of equation (41).

The multigrid method used with the Runge-Kutta time-stepping algorithm is based on the work

of Jameson (ref. 6). The basic idea of the method is to use coarser grids to speed up the propagation

of the fine-grid corrections. Coarser meshes are obtained by eliminating every other mesh line in each

coordinate direction. On the auxiliary meshes, the solution is initialized as

Q_0h) = E _h Qh (42)
_2h

where the subscript refers to the mesh-spacing value, the sum is over the four fine-grid cells that com-

pose the 2 h grid cell, and, again, f_ is a cell volume. This rule conserves mass, momentum, and

energy. On a coarse grid, a forcing function P is added to the governing discrete equations in order to

impose the fine-grid approximation. After the initialization of the coarse-grid solution, this function is

computed as follows:

- '_zht3(°)_, (43)Pzh = __, Rn( Qh) Rzh(

where Rh(Qh) = £hQh. Then, the time-stepping scheme on the (m + 1)st stage becomes

Q(m+l) (-1(0) At (3(m). _ /9(0)]
2h ="¢2h -- O_rn+l-'_[ RZh(,_2h " +'2h'

We can also define a new value R* for the residual as

(44)

= R2h( Q2h) + PZh (45)

This value can be collected, the solution Q2h restricted to the next coarser grid, and the process re-

peated. The corrections computed on a coarse grid are transferred back to a finer grid with bilinear
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interpolation. A fixed W-type cycle is used to execute the multigrid strategy (see ref. 18 for a diagram

of a cycle). In order to make this strategy effective for a wide range of flow conditions, the resultant

coarse-grid corrections are smoothed before they are passed to the finest mesh. The factored scheme

of equation (39) with constant coefficients (fie = Bn = 0.2 ) is used for this smoothing. Also, the ap-

plication of a full multigrid (FMG) method provides a well-conditioned starting solution for the finest

mesh being considered. Additional details of the multigrid procedure are discussed in reference 18.

Discrete Boundary Conditions

At a solid boundary, a row of auxiliary cells is created exterior to the domain of the flow. The

no-slip condition is imposed by treating the Cartesian velocity components as antisymmetric functions

with respect to the solid surface. Thus,

_i,! = -- tLi,2

1)i, 1 =--1)i, 2

(46)

where the indices (i, 1) and ( i, 2) refer to the centers of the auxiliary and the first interior cells, re-

spectively. The surface values of pressure p and temperature T are computed using the reduced normal

momentum and energy equations,

O___p.p= 0 OT _ 0 (47)
On ' On

where r/is the coordinate normal to the surface.

At the outer boundary of"C" meshes, the boundary points are treated in essentially the same way

as described in the discussion of boundary conditions in the next section. Simple extrapolation is used

to compute the flow quantities at the downstream boundary of the C-type mesh topology.

NUMERICAL ALGORITHM FOR ARC2D RESULTS

The ARC2D computations were performed using a code based on the implicit approximate factor-

ization algorithm of Beam and Warming (ref. 2). The code was originally developed by Steger (ref. 19)

and has been steadily improved and modified (refs. 20-22). The algorithm is an implicit approximate-
factorization finite-difference scheme which is first-order accurate in time. Local time-hnearizations

are applied to the nonlinear terms and an approximate factorization of the two-dimensional implicit

operator is used to produce one-dimensional operators. The spatial derivative terms are approximated

with second-order central differences. A diagonal form of the algorithm that produces a computa-

tionaUy efficient modification of the standard algorithm in which the diagonalization results in scalar

pentadiagonal operators in place of the block operators is also used. Explicit and implicit artificial

dissipation terms are added to achieve nonlinear stability. Spatially variable time-steps and mesh se-

quencing are used to accelerate convergence.
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Implicit Time-Differencing and Local Time-Linearization

Applying the first-order Euler implicit time-differencing scheme to equation (8) results in

Qn+l-Qn+h(_l +/_" -Re-IS_I)=0 (48)

with h = A t. The nonlinear terms are linearized in time about Q'_ by a Taylor series such that

=;7"+  'AO n+o(h 2)

._n+l = _n + ,_nAOn + O(h 2) (49)

l:le-lg "+' = Re -1 [_'* + J-1_"A_")] + O(h 2)

where ,4 = OE,/OQ,, B = Off'/OQ,, and "M= OS/OQ, are the flux Sacobians and AQ" is O( h). The

linearizations are second-order accurate.

The Jacobian matrices are .4 or/3 =

t_ t t_x t_tl 0

--uO+t_z¢ 2 _t+O-("l--2)tcxu t_yu--("t- 1)nzv ("/--1)_z

--'gO "t" tgy¢ 2 t_zV -- ("1 -- 1)_vU _t + 0 -- (7 -- 2)_vV (7 -- 1)nV

0[¢ 2 -- al] _,,41 -- ('1-- 1)uO _41 -- (if-- 1)vO fro + _t

with 41 = if(e/p) - ¢ 2, 0 = _zu + _v,

respectively.

where

The viscous flux Jacobian is

(50)

¢2 = ½(if_ 1)(u 2+v2), ands= _ or r/ for ,4 or /3,

A

M=

0 0 0 0

m21 c_10_(p -1) o_20,7(p -1) 0

m31 _20n(p -1 ) 43 On(p -l ) 0

'ITS41 m42 m43 m44

J (514)

m21 = - al O_(u / p) - 42 O,( v/ p)

m31 = -- o_2 19_(u/p) -- 4319.(v/p)

m4, =a419,7 [-(e/p 2) + (u 2 + v2)/p]

- a119.(t_2/p) - 2a2On(_v/;)

-- O_319_?(V2 /p)

m42 = -- 0¢4 19_(u/p) -- m21

m43 = -- _4 19_(v/P) -- m31

m44 =o_40n(p -1)

_l =_[(4/3)rh 2 + r/v2],

43 =#[r/_ 2 + (4/3)r/v2],

_2 = (n/3)n_n_

44 = 7#Pr-_(rl_ _ + rl__)

(51b)
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Applyingequations (49) to equation (48) and combining the A Q'* terms produces the unfactored

block algorithm in delta form,

[z+hO__+hO,__- n_-_hJ-' 0._] _ _--
(52)

Space Differencing

The next step is to take the continuous differential operators 0_ and On and approximate them

with finite-difference operators on a discrete mesh. Introducing a grid of mesh points (j, k), variables

are defined at mesh points as Uj,k = u(jA _, kArl). The grid spacing in the computational domain is

chosen to be unity so that A _, A ,7 = 1. Second-order central-difference operators are used, where, for

example,

6v,j,k=(,,.,,_-,,_-l,_)/2 and 6_,,j,_=(,,j,k+,--_j,k-,)/2 (53_)

For the viscous derivatives, the terms take the form

O_ (O_j,kC_71_j,k ) (53b)

which is differenced in the compact three-point form as

[(_,j,_+,+,_j,,)(a,,,+,_a;,,)_ (,_;,,+,_;,__,)(_j,.- _;,_,)]/2 (53c)

Approximate Factorization

The implicit (left-hand) side of equation (52) can be written as

(I + h_5_.A n + h6,7,Bn - hRe-' 8,_d-' M n) AO, n=

(I+ h',A') (I+ hSnB n-hRe-l'nd-lM ") AO. n

-h 2 8_.AnS,1B '_AQ, n + h 2Re-' 8(A'*6.J-'M"-'nAQ, '_

(54)

The cross term is second-order accurate, since A t_ '_ is O(h). It can therefore be neglected without

degrading the time-accuracy of any first- or second-order scheme.

The resulting factored form of the algorithm is

(I+ hS,.A*) (I+ hg,_B"-hRe-'&Td-l"M '_) AQ '_=

-h (8,e_+8._°- R_-'8._o)
(55)
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with two implicit operators, each of which is block tridiagonal. The solution algorithm now consists of

two one-dimensional sweeps, one in the 4- and one in the rpdirection. Each sweep requires the solution

of a linear block-tridiagonal system by block LU (lower-upper) decomposition.

Diagonal Form of Implicit Algorithm

One way to improve the efficiency of this method is to reduce the operation count by introducing a

diagonalization of the blocks in the implic.cit operators, as developed by Pulliam and Chaussee (ref. 23).

The eigensystems of the flux Jacobians A and B are used in this construction. Initially, the discussion

is restricted to the Euler equations; the application to Navier-Stokes is considered later.

Each of the flux Jacobians ,_ and/_ has real eigenvalues and a complete set of eigenvectors.

Therefore, the Jacobian matrices can be diagonalized (see ref. 24)

with T_ the matrix whose columns are the eigenvectors of A and T n the corresponding eigenvector

matrix for/3.

Replacing A and/3 in equation (52) with their eigensystem decompositions produces

= the explicit right-hand side of equation (52) = R'_ (56)

At this point, equation (56) and the inviscid form of equation (55) are exactly equivalent. A

modified form of equation (56) can be obtained by factoring the T_ and T,7eigenvector matrices outside

the spatial derivative terms _ and fin- The eigenvector matrices are functions of_ and 77and, therefore,

this modification reduces the time-accuracy to at most first-order. The resulting equations are

(57)

where N = T_' Tn.

The diagonal algorithm as presented in equation (57) is only rigorously valid for the Euler equa-

tions. The implicit linearization of the viscous flux S" in the implicit operator for the rt-direction was

neglected, because the viscous flux Jacobian M"" is not simultaneously diagonalizable with the inviscid
flux Jacobian B'*. For stability and robustness, it is desirable to include the viscous term on the implicit

side, but retaining the block operator in the rpdirection requires more computation time. Adding an

approximate viscous eigenvalue,

2
_,_(n) = puRe-l J-l ( nz_+ %) (58)

to the implicit operator has proved to be an appropriate compromise between accuracy and speed.
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Theexplicitsideof the diagonal algorithm is exactly the same as in the original algorithm, equa-

tion (52). The modifications are restricted to the implicit side and so, if the diagonal algorithm con-

verges, the steady-state solution will be identical to one obtained with the unmodified algorithm. The

diagonal algorithm reduces the block-tridiagonal inversion to 4 x 4 matrix multiplies and scalar tridi-

agonal inversions. The overall savings in computational work can be as high as 40%.

Nonlinear Artificial Dissipation Model

A mixed second- and fourth-difference dissipation model with appropriate coefficients produces

a scheme with good shock-capturing capabilities. Jameson et al. have employed a dissipative model

of such a form in which second- and fourth-difference dissipation are combined (ref. I). The model,

written in our notation, is

V, (_j+i,kJT+_,_+ _b/,kJ_) (c_._)A, Qj,k - ,j,,_'_(a)AfV,A,Qj,k) (59)

with

c(2)=s2At max(/zj+1,_/_j-l,k)j,k

_ IPj+I,* - 2pj,k + P/-l,kl

/_j,k -IP/+l,* + 2p/,k + pj-l,kl (60)

_(2) x
-J,_J4)= max(0 , n4At - cj, k )

where for these calculations values of the constants are s2 = 1 and _4 = 1/100. Similar terms are

used in the W-direction. The term _b:',k is a spectral radius scaling factor and is defined as

_j)k = '1]):%

=lUI+

W,=lVt +

which is the sum of the spectral radii of A and ]_.

+

(61)

The first term of equation (58) is a second-difference dissipation term with an extra pressure gradi-

ent coefficient to increase its value near shocks. The second term is a fourth-difference term where the

logic to compute ¢_4k) switches it off when the second-difference nonlinear coefficient is larger then the
constant fourth-difference coefficient. This occurs near a shock. This model is added to the right-hand

explicit side of the algorithm.

The implicit dissipation used with equation (58) is the linearization of the model, treating the

pressure coefficient # and the spectral radius _b as space-varying functions but ignoring their func-

tional dependency on Q. Then the dissipation is linear in Qj,k and is added to the diagonal algorithm,

necessitating scalar pentadiagonal solvers. This produces the most efficient, stable, and convergent

form of the implicit algorithm.

Near computational boundaries, the fourth-difference dissipation is modified so as to eliminate

the five-point stencil. A one-side biased second-difference term is used instead.

16



Convergence Acceleration

In solving these steady-state problems, two techniques were used to accelerate the algorithm, the

goal being to eliminate the transient as quickly as possible. Note that for the delta form of the algorithm

(either factored or unfactored) the steady-state solution is independent of the time-step, h. Therefore,

the time-step path to the steady-state does not affect the final solution and we can use time-step se-

quences or spatially variable time-steps to accelerate convergence. The particular form of spatially

variable time-step used here is to replace h with

( 1 ) (62)At0 1 +

with At0 chosen to be O(1). The use of the local time-step can improve convergence time by a factor

of 2 to 3.

Another way to accelerate convergence to a steady state is to obtain a good initial guess for a

fine mesh by first iterating on a sequence of coarse grids and then interpolating the solution up to the

next refined grid. A coarsened grid is cut from each previous grid by halving the number of points

in the _-direction and by regenerating a new r/-distribution using fewer points. The _7-distribution is

regenerated because in viscous flows the spacing near the wall would be too coarse if the halving

procedure were used. A small number of iterations (a few hundred) are carried out on each coarsened

grid, then the approximate solution is interpolated onto a more refined grid. The finest grid is then

iterated to convergence. This can reduce the practical convergence time by as much as a factor of 2.

Boundary Conditions

At a rigid-body surface, the no-slip condition is satisfied with the Cartesian velocities u, v set to

zero. The pressure is obtained through extrapolation such that cgP/cgrt = 0. A zeroth-order extrap-

olation is used to compute density. At subsonic free-stream conditions, the outer boundary condition

is based on locally one-dimensional Riemann invariants. At a boundary, local normal and tangential

velocity components are computed. The normal component is the scaled contravariant velocity,

V,, = _7_u + r/yv (63)

and the tangential component is

r/_u - _v (64)

The locally one-dimensional Riemann invariants are

R1 = V,_ - 2t_/(,/- 1) and R2 = V,_ + 2a/(q¢ - 1) (65)

Two other equations are needed so that four unknowns (the four flow variables) can be calculated; Vt

and a quantity S = p/p% which has the same functional dependence as entropy, are used. For an inflow
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boundary, Vn < 0 and then three quantifies can be specified. The Riemann invariant RI, Vt and 8 are

all set to free-stream values. The other variable R2 is extrapolated from the interior flow variables. On

outflow, Vn > 0, only R1 is fixed to free stream and R2, Vt, and S' are extrapolated. Once these four

variables are available at the boundary the four flow variables Q can be obtained.

For these computations, the wake cut in the "C" meshes is handed implicidy. The array storage

is shuffled so that integration in the r/-direction proceeds directly from one outer boundary to the other

in the wake region, and from the body surface outward to the far-field boundary in the rest of the grid.

RESULTS

Computational results for the following five viscous transonic airfoil cases (from ref. 25) were

compared:

1. (A1) NACA 0012 at Moo = 0.7, o_e_,p= 1.86 °, ot_,_,_ = 1.49 °, Re = 9 × 10 6 , transition at 0.05
chords.

2. (A2) NACA 0012 at Moo = 0.55, c_ezp = 9.86 °, acorr = 8.34 °, Re = 9 x 10 6 , transition at

0.05 chords.

3. (A4) NACA 0012 at Moo = 0.7, a = 3.0 °, `Re = 9 x 10 6 , transition at 0.05 chords.

4. (6) RAE 2822 at Moo,_p = 0.725, c_,_, = 2.92 °, Moo_,_ = 0.729, aco,., = 2.31 °, Re =
6.5 × 10 6 , transition at 0.03 chords.

5. (10) RAE 2822 at Mooexp = 0.750, c_exp = 3.19 °, Mooco_ = 0.754, oec,_ = 2.57 °, ,Re =
6.2 x 10 6 , transition at 0.03 chords.

The angle-of-attack corrections for the NACA 0012 cases were obtained from reference 26. The

corrections for the RAE 2822 cases were obtained from Hall (private communication from M. G. Hall,

Royal Aircraft Establishment, Farnborough, UK, 1988). In those cases, the airfoil coordinates were

measured coordinates with a camber correction, rather than the usual design coordinates, as proposed

by Hall. Experimental data for cases A1 and A2 are from reference 26, and those for cases 6 and 10
are from reference 27.

Each of the two codes--ARC2D and FLOMG--were used to compute each of the five cases on

three different grids generated by Maksymiuk, Swanson, and Hall. All grids were large C-meshes with

leading-edge and trailing-edge clustering and very fine spacing in the normal direction near the body

surface. The two grids (one for the NACA 0012 and one for the RAE 2822) designated "Maksymiuk"

were generated with a hyperbolic solver (ref. 28). These grids are 385 x 65 points, with 321 points on

the body (streamwise) and 32 points in the wake. The only clustering of points is at the leading and

trailing edges, where the spacing is 0.001. Normal spacing at the body is 0.00031. The outer boundary

is at 25 chords. The grids designated "Swanson" are also 385 x 65 points, with 257 points on the body

and 64 in the wake. The leading- and trailing-edge spacing is 0.001 on the NACA airfoil and 0.002
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on the RAE airfoil. Normal spacing at the body is 0.000004 on the NACA airfoil and 0.00001 on the

RAE. The distance to the outer boundary is about 20 chords. The "Hall" grids are slightly less resolved

at 321 × 65 points, with 257 points on the body and 32 points in the wake. The outer boundary is at

8 chords. The NACA 0012 grid has a normal spacing of 0.0000127 at the wall and clustering at the

leading and trailing edges, where the spacing is 0.00066 and 0.00481, respectively. The RAE 2822 grid

has a normal spacing of 0.0000555, a leading-edge spacing of 0.00064, and a trailing-edge spacing of
0.00457.

All of the figures showing computational results are found at the end of the paper. Figures 3--7

show the pressure coefficients on the airfoil surfaces; results from each grid are shown separately. For

case A1 (fig. 3), the computations show a weak shock near the leading edge. Despite the apparently

larger amount of second-difference dissipation, the ARC2D gives a slightly sharper shock than the

FLOMG. This behavior of the two codes is a consequence of the several differences in the numerical

dissipation employed. In particular, there are differences in the form of the eigenvalue scaling, the

magnitude of the constant coefficient for the fourth-difference term, and implementation of the switch-

ing operator. In case A2 (fig. 4), there is a strong shock at about 20% chord. On the highly resolved

Maksymiuk grid (fig. 4(a)), the ARC2D nearly captures the lambda shock structure; however, the main

part of the shock is slightly farther aft than the experiment indicates. The FLOMG exhibits a sim-

ple strong shock in this region. On the coarser grids (figs. 4(b) and 4(c)), both codes compute simple

shocks, with the ARC2D locating it slightly farther aft on both grids. The same behavior is observed

for case A4 (fig. 5). On two of the grids (figs. 5(a) and 5(c)), the FLOMG results show a small over-

compression at the shock. Results for both cases 6 and 10 are similar. On the finest grid (figs. 6(a) and

7(a)), there is again a slight difference in shock location. On the coarser grids (figs. 6(b), 6(c), 7(b),

and 7(c)), the two codes show slight disagreement along the upper surface, as well as at the shock. The

large error in shock location relative to experiment in case 10 has been attributed to a shortcoming in

the turbulence model for cases with large separation zones (ref. 25).

Figures 8-12 show skin-friction computations for each case. In the plots for case A 1 (fig. 8), the

ARC2D results show a bump at 20% chord, corresponding to the sharper shock produced there. The

FLOMG results for cases A1, A2, and A4 on the Hall grid (figs. 8(c), 9(c), and 10(c)) have a sharp

increase at the trailing edge. Figure 11 illustrates how important grid resolution is to the proper calcu-

lation of skin friction. Experimental results are closely matched by both codes on the Maksymiuk and

Swanson grids (figs. 11 (a) and 11(b)); however, on the Hall grid (fig. 11 (c)), both codes underpredict

the friction coefficient. The Hall grid does not have adequate grid resolution in the normal direction

at the body surface. Experimental results are less successfully matched in case 10 (fig. 12), but both

codes still compute somewhat lower friction on the Hall grid.

Selected boundary-layer profiles from cases 6 and I0 are shown in figures 13-16. Case 6 results

are in figures 13 and 14. Both codes are in good agreement with each other and with experiment. Some

of the dissimilarities might reflect difficulties in pinpointing the edge of the boundary layer. The results

for case 10 (figs. 15 and 16) do not match those of the experiment, since the turbulence model precludes

computing the post-shock separation accurately.

Displacement thickness is plotted in figures 17 and 18. The results of FLOMG for case 6 are quite

good, but those of the ARC2D underpredict the experiment downstream of the shock. This could be a

result of the greater dissipation used in its computations.
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Table 1 displays lift, drag, and convergence data, as well as CPU time in seconds needed to achieve

a given percentage of the converged value of lift. It is evident that FLOMG, which can get a solution

to 0.1% of the converged value of the lift coefficient in just over a minute for most cases, is much

faster than ARC2D, which takes 5-11 min. For computing steady-state solutions, the extra work of

an implicit method is not needed. However, the explicit scheme is significantly less efficient for un-

steady flows than for steady ones, a result of the inapplicability of local time-stepping and the low

effectiveness of the current form of the multigrid method. Improvements are being investigated. Some

of ARC2D's convergence times are unusually high because the runs were not optimized to converge

quickly. Also, implicit wake integration operates more efficiently on the Swanson meshes, which have

twice as many points in the wake as the Maksymiuk meshes, so there are more long vectors. Conse-

quently, convergence times are generally shorter on the Swanson grids than on the Ames grids. It is

interesting that FLOMG requires about the same amount of time in all cases, whereas ARC2D is quite

variable (especially for case 10, which was difficult to converge because of slight motions of the shock

on the finely spaced grids); moreover, ARC2D usually requires proportionately more time for the final

stage of convergence (from 1% of CL to 0.1% of CL) than FLOMG.

Some additional results obtained with FLOMG are presented in the appendix. They indicate the

influence of artificial dissipation on several of the computations.

CONCLUDING REMARKS

ARC2D and FLOMG produce essentially the same results. Pressure coefficients are nearly identi-

cal, except in some cases near shocks; some of these differences are attributable to different dissipation

coefficients. Their agreement with experimental data is excellent, except for shock location in flows

with large separation zones. Skin-friction coefficients, boundary-layer profiles, and displacement-

thickness results are very similar. Satisfactory agreement with experimental data is observed for grids

with sufficiently fine spacing near the body.

Lift coefficients calculated by the two codes axe generally within 1% of each other, and drag

coefficients generally fall within 5% of each other. For attached cases, both codes predict lift within

5% of the experimental value, and drag within 10%. This accuracy is not achieved for flows with

separation, where deficiencies in the turbulence model are apparent.

For the steady-state cases computed here, the explicit multigrid method demonstrated superior

convergence characteristics, requiring only about 1 min of CPU time on a Cray 2, compared with

5-10 min for the implicit method.
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APPENDIX

THE EFFECT OF DISSIPATION COEFFICIENTS ON FLOMG RESULTS

In FLOMG computations, the constants for the second-difference and fourth-difference artifi-

cial dissipation terms were selected because they had worked quite well for a wide variety of two-

dimensional external and internal flow problems. However, at least for the airfoil cases considered

herein, which include the difficult RAE airfoil case 10, the dissipation constants can be reduced by a

factor of 2 without causing serious deterioration in convergence behavior. Since differences occurred

in the vicinity of shock waves between some of the results obtained with FLOMG and ARC2D, several

computations were repeated to determine the effect of the smaller dissipation factors.

Very small changes occurred in the sharpness of the shocks for the cases considered. As seen

in table 2, the maximum increase in lift was less than 3%. Except for case 10, in which the total

drag increased by 5 counts, the drag increased by 2 counts or less. The computer times required to

reach the different levels of lift-coefficient convergence are essentially the same as those of the higher

dissipation constants. This again demonstrates the robustness of the scheme. Pressure coefficients for

the three cases shown in table 2 are presented in figures 19-21; skin-friction coefficients are presented

in figures 22-24.
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Table 1. Lift coefficients, drag coefficients, and convergence times.

Case grid

A1 Maksymiuk

Swanson

Hall

experiment

A2 Maksymiuk

Swanson

Hall

experiment

A4 Maksymiuk

Swanson

Hall

6 Maksymiuk !

Swanson

Hall

experiment

10 Maksymiuk

Swanson

Hall

experiment

code Ct Ca Ca,, CotI

ARC2D 0.253 0.0082 0.0025 0.0057 92 396

FLOMG 0.252 0.0081 0.0024 0.0056 52

ARC2D 0.256 0.0088 0.0023 0.0065 25 250

FLOMG 0.253 0.0081 0.0024 0.0057 52

ARC2D 0.257 0.0073 0.0022 0.0051 214 380

FLOMG 0.258 0.0077 0.0023 0.0052 39

0.241 0.0079

ARC2D 0.978 0.0357 0.0319 0.0038 59 254

FLOMG 0.984 0.0352 0.0314 0.0038 53

ARC2D 0.994 0.0368 0.0321 0.0047 56 260

FLOMG 0.981 0.0353 0.0316 0.0037 59

ARC2Di 0.991 0.0360 0.0326 0.0035 35 250

FLOMG 0.949 0.0341 0.0308 0.0033 62

0.983 0.0253

ARC2D 0.503 0.0143 0.0089 0.0054 54 369

FLOMG 0.496 0.0138 0.0085 0.0052 52

ARC2D 0.508 0.0149 0.0089 0.0060 23 230

FLOMG 0.501 0.0139 0.0086 0.0053 54

ARC2D 0.509 0.0135 0.0088 0.0047 46 112

FLOMG 0.493 0.0132 0.0083 0.0049 51

ARC2D 0.778] 0.0143 0.0084 0.0059 101 406

FLOMG 0.772 0.0136 0.0080 0.0056 52

ARC2D 0.774 0.0141 0.0081 0.0060 108 401

FLOMG 0.783 0.0138 0.0082 0.0056 53

ARC2D 0.773 0.01321 0.0082 0.0050 86 282

FLOMG 0.782 0.0134 0.0081 0.0054 45

0.743 0.0127

ARC2D 0.805 0.0292 0.0236 0.0056 66 1147

FLOMG 0.811 0.0289 0.0235 0.0054 52

ARC2D 0.800 0.0288 0.0231 0.0057 59 325

FLOMG 0.814 0.0287 0.0233 0.0054 59

ARC2D 0.804 0.0279 0.0231 0.0048 47 114

FLOMG 0.807 0.0276 0.0224 0.0052 69

0.743 0.0242

CPU time required to

reach designated value

of Ct convergence, sec.

5% 1% 0.25% 0.1%

572i 678

72

350 415

60

493 556

51

335 356

81

310 450

78

350 384

79

529 661

72

317 385

60

293 318

56

572 695

7O

621 745

70

388 502

71

1478 1511

72
379 ! 935

99

126 474

83
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Table2. Lift coefficients,dragcoefficients,andconvergencetimes
for FLOMGresultswith reducedartificialdissipation.

Case grid Ct Cd C_

CPU time required to

reach designated value

Cal of CL convergence, sec

A2 Maksymiuk 0.990 0.0352 0.0312 0.0039
Hall 0.963! 0.0340 0.0305 0.0034

6 Maksymiuk 0.779 0.0137 0.0080 0.0056

Hall 0.794 0.0136 0.0082 0.0054

10 Maksymiuk 0.820 0.0294 0.0240 0.0054

1% 0.1%

53 81

62 79

54 70

45 74

52 72
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Figure 3.-Pressure coefficient for NACA case AI: Moo = 0.7, ae_v = 1.86 °, a_o.. = 1.49 °.
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