1,356 research outputs found

    Infrared Study of Fullerene Planetary Nebulae

    Full text link
    We present a study of 16 PNe where fullerenes have been detected in their Spitzer spectra. This large sample of objects offers an unique opportunity to test conditions of fullerene formation and survival under different metallicity environments as we are analyzing five sources in our own Galaxy, four in the LMC, and seven in the SMC. Among the 16 PNe under study, we present the first detection of C60 (possibly also C70) fullerenes in the PN M 1-60 as well as of the unusual 6.6, 9.8, and 20 um features (possible planar C24) in the PN K 3-54. Although selection effects in the original samples of PNe observed with Spitzer may play a potentially significant role in the statistics, we find that the detection rate of fullerenes in C-rich PNe increases with decreasing metallicity (5% in the Galaxy, 20% in the LMC, and 44% in the SMC). CLOUDY photoionization modeling matches the observed IR fluxes with central stars that display a rather narrow range in effective temperature (30,000-45,000 K), suggesting a common evolutionary status of the objects and similar fullerene formation conditions. The observed C60 intensity ratios in the Galactic sources confirm our previous finding in the MCs that the fullerene emission is not excited by the UV radiation from the central star. CLOUDY models also show that line- and wind-blanketed model atmospheres can explain many of the observed [NeIII]/[NeII] ratios by photoionization suggesting that possibly the UV radiation from the central star, and not shocks, are triggering the decomposition of the circumstellar dust grains. With the data at hand, we suggest that the most likely explanation for the formation of fullerenes and graphene precursors in PNe is that these molecular species are built from the photo-chemical processing of a carbonaceous compound with a mixture of aromatic and aliphatic structures similar to that of HAC dust.Comment: Accepted for publication in ApJ (43 pages, 11 figures, and 4 tables). Small changes to fit the proof-corrected article to be published in Ap

    In the quest of specific-domain ontology components for the semantic web

    Get PDF
    This paper describes an approach we have been using to identify specific-domain ontology components by using Self-Organizing Maps. These components are clustered together in a natural way according to their similarity. The knowledge maps, as we call them, show colored regions containing knowledge components that may be used to populate an specific-domain ontology. Later, these ontology may be used by software agents to carry out basic reasoning task on our behalf. In particular, we deal with the issue of not constructing the ontology from scratch, our approach helps us to speed up the ontology creation process

    ASTROD and ASTROD I -- Overview and Progress

    Full text link
    In this paper, we present an overview of ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD I mission concepts and studies. The missions employ deep-space laser ranging using drag-free spacecraft to map the gravitational field in the solar-system. The solar-system gravitational field is determined by three factors: the dynamic distribution of matter in the solar system; the dynamic distribution of matter outside the solar system (galactic, cosmological, etc.) and gravitational waves propagating through the solar system. Different relativistic theories of gravity make different predictions of the solar-system gravitational field. Hence, precise measurements of the solar-system gravitational field test all these. The tests and observations include: (i) a precise determination of the relativistic parameters beta and gamma with 3-5 orders of magnitude improvement over previous measurements; (ii) a 1-2 order of magnitude improvement in the measurement of G-dot; (iii) a precise determination of any anomalous, constant acceleration Aa directed towards the Sun; (iv) a measurement of solar angular momentum via the Lense-Thirring effect; (v) the detection of solar g-mode oscillations via their changing gravity field, thus, providing a new eye to see inside the Sun; (vi) precise determination of the planetary orbit elements and masses; (viii) better determination of the orbits and masses of major asteroids; (ix) detection and observation of gravitational waves from massive black holes and galactic binary stars in the frequency range 0.05 mHz to 5 mHz; and (x) exploring background gravitational-waves.Comment: 17 pages, 6 figures, presented to The Third International ASTROD Symposium on Laser Astrodynamics, Space Test of Relativity and Gravitational-Wave Astronomy, Beijing, July 14-16, 2006; International Journal of Modern Physics D, in press (2008

    Possible Tomography of the Sun's Magnetic Field with Solar Neutrinos

    Get PDF
    The data from solar neutrino experiments together with standard solar model predictions are used in order to derive the possible profile of the magnetic field inside the Sun, assuming the existence of a sizeable neutrino magnetic moment and the resonant spin flavour mechanism. The procedure is based on the relationship between resonance location and the energy dependent neutrino suppression, so that a large neutrino suppression at a given energy is taken to be connected to a large magnetic field in a given region of the Sun. In this way it is found that the solar field must undergo a very sharp increase by a factor of at least 6 - 7 over a distance no longer than 7 - 10% of the solar radius, decreasing gradually towards the surface. The range in which this sharp increase occurs is likely to be the bottom of the convective zone. There are also indications in favour of the downward slope being stronger at the start and more moderate on approaching the solar surface. Typical ranges for the magnetic moment are from a few times 10^{-13}\mu_B to its laboratory upper bounds while the mass square difference between neutrino flavours is of order (0.6-1.9) x 10^{-8}eV^2.Comment: Several minor corrections performed, sunspot anticorrelation discussed, references added, 29 pages including 8 figures in PostScrip

    Neutrino magnetic moments, flavor mixing, and the SuperKamiokande solar data

    Get PDF
    We find that magnetic neutrino-electron scattering is unaffected by oscillations for vacuum mixing of Dirac neutrinos with only diagonal moments and for Majorana neutrinos with two flavors. For MSW mixing, these cases again obtain, though the effective moments can depend on the neutrino energy. Thus, e.g., the magnetic moments measured with νˉe\bar{\nu}_e from a reactor and νe\nu_e from the Sun could be different. With minimal assumptions, we find a new limit on μν\mu_{\nu} using the 825-days SuperKamiokande solar neutrino data: ∣μν∣≤1.5×10−10μB|\mu_{\nu}| \le 1.5\times 10^{-10} \mu_B at 90% CL, comparable to the existing reactor limit.Comment: 4 pages including two inline figures. New version has 825 days SK result, some minor revisions. Accepted for Physical Review Letter
    • …
    corecore