7,178 research outputs found
Recommended from our members
On Automorphisms and Focal Subgroups of Blocks
Given a p-block B of a finite group with defect group P and fusion system on P, we show that the rank of the group is invariant under stable equivalences of Morita type. The main ingredients are the construction, due to Broué and Puig, a theorem of Weiss on linear source modules, arguments of Hertweck and Kimmerle applying Weiss’ theorem to blocks, and connections with integrable derivations in the Hochschild cohomology of block algebras
Descent of Equivalences and Character Bijections
Categorical equivalences between block algebras of finite groups—such as Morita and derived equivalences—are well known to induce character bijections which commute with the Galois groups of field extensions. This is the motivation for attempting to realise known Morita and derived equivalences over non-splitting fields. This article presents various results on the theme of descent to appropriate subfields and subrings. We start with the observation that perfect isometries induced by a virtual Morita equivalence induce isomorphisms of centres in non-split situations and explain connections with Navarro’s generalisation of the Alperin–McKay conjecture. We show that Rouquier’s splendid Rickard complex for blocks with cyclic defect groups descends to the non-split case. We also prove a descent theorem for Morita equivalences with endopermutation source
A New Model of Biodosimetry to Integrate Low and High Doses
Biological dosimetry, that is the estimation of the dose of an exposure to ionizing radiation by a biological parameter, is a very important tool in cases of radiation accidents. The score of dicentric chromosomes, considered to be the most accurate method for biological dosimetry, for low LET radiation and up to 5 Gy, fits very well to a linear-quadratic model of dose-effect curve assuming the Poisson distribution. The accuracy of this estimation raises difficulties for doses over 5 Gy,the highest dose of the majority of dose-effect curves used in biological dosimetry. At doses over 5 Gy most cells show difficulties in reaching mitosis and cannot be used to score dicentric chromosomes. In the present study with the treatment of lymphocyte cultures with caffeine and the standardization of the culture time, metaphases for doses up to 25 Gy have been analyzed. Here we present a new model for biological dosimetry, which includes a Gompertz-type function as the dose response, and also takes into account the underdispersion of aberrationamong-cell distribution. The new model allows the estimation of doses of exposures to ionizing radiation of up to 25 Gy. Moreover, the model is more effective in estimating whole and partial body exposures than the classical method based on linear and linear-quadratic functions, suggesting their effectiveness and great potential to be used after high dose exposures of radiation
Confinement and Quantization Effects in Mesoscopic Superconducting Structures
We have studied quantization and confinement effects in nanostructured
superconductors. Three different types of nanostructured samples were
investigated: individual structures (line, loop, dot), 1-dimensional (1D)
clusters of loops and 2D clusters of antidots, and finally large lattices of
antidots. Hereby, a crossover from individual elementary "plaquettes", via
clusters, to huge arrays of these elements, is realized. The main idea of our
study was to vary the boundary conditions for confinement of the
superconducting condensate by taking samples of different topology and, through
that, modifying the lowest Landau level E_LLL(H). Since the critical
temperature versus applied magnetic field T_c(H) is, in fact, E_LLL(H) measured
in temperature units, it is varied as well when the sample topology is changed
through nanostructuring. We demonstrate that in all studied nanostructured
superconductors the shape of the T_c(H) phase boundary is determined by the
confinement topology in a unique way.Comment: 28 pages, 19 EPS figures, uses LaTeX's aipproc.sty, contribution to
Euroschool on "Superconductivity in Networks and Mesoscopic Systems", held in
Siena, Italy (8-20 september 1997
Comparative study of TIG and SMAW root welding passes on ductile iron cast weldability
This work compares the weldability of ductile iron when: (I) a root weld is applied with a tungsten inert gas (TIG) process using an Inconel 625 source rod and filler welds are subsequently applied using coated electrodes with 97,6%Ni; and (II) welds on ductile iron exclusively made using the manual shielded metal arc welding technique (SMAW). Both types of welds are performed on ductile iron specimen test plates that are subjected to preheat and post-weld annealing treatments. Samples with TIG root-welding pass shown higher hardness but slightly lower ductility and strength. Both types of welding achieved better ductile and strength properties than ones found in literature
- …