1,433 research outputs found

    Entropy production for velocity-dependent macroscopic forces: the problem of dissipation without fluctuations

    Full text link
    In macroscopic systems, velocity-dependent phenomenological forces F(v)F(v) are used to model friction, feedback devices or self-propulsion. Such forces usually include a dissipative component which conceals the fast energy exchanges with a thermostat at the environment temperature TT, ruled by a microscopic Hamiltonian HH. The mapping (H,T)→F(v)(H,T) \to F(v) - even if effective for many purposes - may lead to applications of stochastic thermodynamics where an incompleteincomplete fluctuating entropy production (FEP) is derived. An enlightening example is offered by recent macroscopic experiments where dissipation is dominated by solid-on-solid friction, typically modelled through a deterministic Coulomb force F(v)F(v). Through an adaptation of the microscopic Prandtl-Tomlinson model for friction, we show how the FEP is dominated by the heat released to the TT-thermostat, ignored by the macroscopic Coulomb model. This problem, which haunts several studies in the literature, cannot be cured by weighing the time-reversed trajectories with a different auxiliary dynamics: it is only solved by a more accurate stochastic modelling of the thermostat underlying dissipation.Comment: 6 pages, 3 figure

    Nickel hydrogen bipolar battery electrode design

    Get PDF
    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented

    Bipolar Nickel-hydrogen Batteries for Aerospace Applications

    Get PDF
    A bipolar nickel-hydrogen battery which effectively addresses all key requirements for a spacecraft power system, including long-term reliability and low mass, is discussed. The design of this battery is discussed in the context of system requirements and nickel-hydrogen battery technology in general. To achieve the ultimate goal of an aerospace application of a bipolar Ni-H2 battery several objectives must be met in the design and development of the system. These objectives include: maximization of reliability and life; high specific energy and energy density; reasonable cost of manufacture, test, and integration; and ease in scaling for growth in power requirements. These basic objectives translate into a number of specific design requirements, which are discussed

    What is the temperature of a granular medium?

    Full text link
    In this paper we discuss whether thermodynamical concepts and in particular the notion of temperature could be relevant for the dynamics of granular systems. We briefly review how a temperature-like quantity can be defined and measured in granular media in very different regimes, namely the glassy-like, the liquid-like and the granular gas. The common denominator will be given by the Fluctuation-Dissipation Theorem, whose validity is explored by means of both numerical and experimental techniques. It turns out that, although a definition of a temperature is possible in all cases, its interpretation is far from being obvious. We discuss the possible perspectives both from the theoretical and, more importantly, from the experimental point of view

    On anomalous diffusion and the out of equilibrium response function in one-dimensional models

    Full text link
    We study how the Einstein relation between spontaneous fluctuations and the response to an external perturbation holds in the absence of currents, for the comb model and the elastic single-file, which are examples of systems with subdiffusive transport properties. The relevance of non-equilibrium conditions is investigated: when a stationary current (in the form of a drift or an energy flux) is present, the Einstein relation breaks down, as is known to happen in systems with standard diffusion. In the case of the comb model, a general relation, which has appeared in the recent literature, between the response function and an unperturbed suitable correlation function, allows us to explain the observed results. This suggests that a relevant ingredient in breaking the Einstein formula, for stationary regimes, is not the anomalous diffusion but the presence of currents driving the system out of equilibrium.Comment: 10 pages, 4 figure

    Shear viscosity to electric conductivity ratio of the QGP

    Get PDF
    The transport coefficients of strongly interacting matter are currently subject of intense theoretical and phenomenological studies due to their relevance for the characterization of the quark-gluon plasma produced in ultra-relativistic heavy-ion collisions (uRHIC). We predict that (η/s)/(σel/T), independently on the running coupling αs(T), should increase up to about ~ 20 for T → Tc, while it goes down to a nearly flat behavior around ≃ 4 for T ≥ 4 Tc. Therefore we find a stronger T-dependence of σel/T with respect to η/s that in a quasiparticle approach is constrained by lQCD thermodynamics. A conformal theory, instead, predicts a similar T dependence of η/s and σel/T
    • …
    corecore