2,029 research outputs found

    Hulme: Ten years on

    Get PDF

    Power injected in a granular gas

    Get PDF
    A granular gas may be modeled as a set of hard-spheres undergoing inelastic collisions; its microscopic dynamics is thus strongly irreversible. As pointed out in several experimental works bearing on turbulent flows or granular materials, the power injected in a dissipative system to sustain a steady-state over an asymptotically large time window is a central observable. We describe an analytic approach allowing us to determine the full distribution of the power injected in a granular gas within a steady-state resulting from subjecting each particle independently either to a random force (stochastic thermostat) or to a deterministic force proportional to its velocity (Gaussian thermostat). We provide an analysis of our results in the light of the relevance, for other types of systems, of the injected power to fluctuation relations.Comment: 9 pages, 4 figures. Contribution to Proceedings of "Work, Dissipation, and Fluctuations in Nonequilibrium Physics", Brussels, 200

    Injected power and entropy flow in a heated granular gas

    Full text link
    Our interest goes to the power injected in a heated granular gas and to the possibility to interpret it in terms of entropy flow. We numerically determine the distribution of the injected power by means of Monte-Carlo simulations. Then, we provide a kinetic theory approach to the computation of such a distribution function. Finally, after showing why the injected power does not satisfy a Fluctuation Relation a la Gallavotti-Cohen, we put forward a new quantity which does fulfill such a relation, and is not only applicable in a variety of frameworks outside the granular world, but also experimentally accessible.Comment: accepted in Europhys. Let

    Fluctuations of power injection in randomly driven granular gases

    Full text link
    We investigate the large deviation function pi(w) for the fluctuations of the power W(t)=w t, integrated over a time t, injected by a homogeneous random driving into a granular gas, in the infinite time limit. Starting from a generalized Liouville equation we obtain an equation for the generating function of the cumulants mu(lambda) which appears as a generalization of the inelastic Boltzmann equation and has a clear physical interpretation. Reasonable assumptions are used to obtain mu(lambda) in a closed analytical form. A Legendre transform is sufficient to get the large deviation function pi(w). Our main result, apart from an estimate of all the cumulants of W(t) at large times t, is that pi(w) has no negative branch. This immediately results in the failure of the Gallavotti-Cohen Fluctuation Relation (GCFR), that in previous studies had been suggested to be valid for injected power in driven granular gases. We also present numerical results, in order to discuss the finite time behavior of the fluctuations of W(t). We discover that their probability density function converges extremely slowly to its asymptotic scaling form: the third cumulant saturates after a characteristic time larger than 50 mean free times and the higher order cumulants evolve even slower. The asymptotic value is in good agreement with our theory. Remarkably, a numerical check of the GCFR is feasible only at small times, since negative events disappear at larger times. At such small times this check leads to the misleading conclusion that GCFR is satisfied for pi(w). We offer an explanation for this remarkable apparent verification. In the inelastic Maxwell model, where a better statistics can be achieved, we are able to numerically observe the failure of GCFR.Comment: 23 pages, 15 figure

    Real-time assembly of ribonucleoprotein complexes on nascent RNA transcripts.

    Get PDF
    Cellular protein-RNA complexes assemble on nascent transcripts, but methods to observe transcription and protein binding in real time and at physiological concentrations are not available. Here, we report a single-molecule approach based on zero-mode waveguides that simultaneously tracks transcription progress and the binding of ribosomal protein S15 to nascent RNA transcripts during early ribosome biogenesis. We observe stable binding of S15 to single RNAs immediately after transcription for the majority of the transcripts at 35 °C but for less than half at 20 °C. The remaining transcripts exhibit either rapid and transient binding or are unable to bind S15, likely due to RNA misfolding. Our work establishes the foundation for studying transcription and its coupled co-transcriptional processes, including RNA folding, ligand binding, and enzymatic activity such as in coupling of transcription to splicing, ribosome assembly or translation

    A basic protocol for the acoustic characterization of small and medium-sized classrooms

    Get PDF
    To promote a fast and effective characterization of the sound environment in small and medium-sized classrooms, a basic measurement protocol, based on a minimum number of parameters and positions, is provided. Measurements were taken in 29 occupied classrooms belonging to 13 primary schools in Turin, Italy, that differ in location and typology. The background noise level was acquired during silent and group activities, and the reverberation time, speech clarity, useful-to-detrimental ratio and speech level, were acquired along the main axis of each classroom and in one or two offset positions. To reduce the number of measured parameters that can be used to fully characterize classroom acoustics, data were divided into two groups on the basis of a cutoff value of maximum occupied reverberation time in the case of moderate and severe requirements. Given the strong correlation among the quantities, thresholds were identified for the other acoustical parameters, and their accuracy and precision were tested to assess their ability to classify the acoustic quality as compliant or non-compliant. Results suggest that more convenient parameters, like clarity in the central position of the classroom, can be used instead of reverberation time to classify classroom acoustics

    Metal-free α-trifluoromethylthiolation and α-trifluoromethylselenolation of carbonyl derivatives

    Get PDF
    The incorporation of a SCF3 or a SeCF3 group into organic molecules is a topic of great interest, especially for the pharmaceutical and agrochemical industries. Due to their high lipophilicity and high electron-withdrawing character (Hansch lipophilicity parameter piR =1.44 (SCF3) vs piR =1.29 (SeCF3)), these moieties represent a powerful opportunity to influence the pharmacokinetics properties of a drug molecule. In the last years, new structural units, rising from the association between chalcogens and fluorinated moieties, have been introduced into carbonyl compounds, as emerging class with potential applications on several fields. New reagents have been developed as sources of electrophilic SCF3 and SeCF3 groups; however, a widespread use of such fluorinated compounds is hampered by the very limited number of strategies available for their preparation. In this contest, we have developed two methodologies for the preparation of alpha-SCF3 and alpha-SeCF3 substituted carbonyl derivatives starting from non activated ketones or their derivatives

    Energy fluctuations in vibrated and driven granular gases

    Full text link
    We investigate the behavior of energy fluctuations in several models of granular gases maintained in a non-equilibrium steady state. In the case of a gas heated from a boundary, the inhomogeneities of the system play a predominant role. Interpreting the total kinetic energy as a sum of independent but not identically distributed random variables, it is possible to compute the probability density function (pdf) of the total energy. Neglecting correlations and using the analytical expression for the inhomogeneous temperature profile obtained from the granular hydrodynamic equations, we recover results which have been previously observed numerically and which had been attributed to the presence of correlations. In order to separate the effects of spatial inhomogeneities from those ascribable to velocity correlations, we have also considered two models of homogeneously thermostated gases: in this framework it is possible to reveal the presence of non-trivial effects due to velocity correlations between particles. Such correlations stem from the inelasticity of collisions. Moreover, the observation that the pdf of the total energy tends to a Gaussian in the large system limit, suggests that they are also due to the finite size of the system.Comment: 13 pages, 10 figure

    Organocatalytic Michael addition to (D)-mannitol-derived enantiopure nitroalkenes: A valuable strategy for the synthesis of densely functionalized chiral molecules

    Get PDF
    Carbohydrates are abundant renewable resources and are a feedstock for green chemistry and sustainable synthesis of the future. Among the hexoses and the pentoses present in biomass, mannitol was selected in the present project as a valuable platform, directly available from the chiral pool, to build highly functionalized molecules. Starting from (R)-2,3-O-cyclohexylidene glyceraldehyde, which is easily prepared in a large scale from D-mannitol, an enantiopure chiral nitro alkene was prepared by reaction with nitromethane, and its reactivity studied. Organocatalytic Michael addition of dimethyl malonate, \u3b2-keto esters, and other nucleophiles on the nitro alkene afforded high stereoselectivity and densely functionalized chiral molecules, which were further synthetically developed, leading to five-membered lactones and bicyclic lactams. Preliminary studies showed that the metal-free catalytic reaction on the chiral nitro alkene can be performed under continuous flow conditions, thus enabling the use of (micro)mesofluidic systems for the preparation of enantiomerically pure organic molecules from the chiral pool

    Effect of competitive acoustic environments on speech intelligibility

    Get PDF
    Excessive noise and reverberation times degrade listening abilities in everyday life environments. This is particularly true for school settings. Most classrooms in Italy are settled in historical buildings that generate competitive acoustic environments. So far, few studies investigated the effect of real acoustics on speech intelligibility and on the spatial release from masking, focusing more on laboratory conditions. Also, the effect of noise on speech intelligibility was widely investigated considering its energetic rather than its informational content. Therefore, a study involving normal hearing adults was performed presenting listening tests via headphone and considering the competitive real acoustics of two primary-school classrooms with reverberation time of 0.4 s and 3.1 s, respectively. The main objective was the investigation of the effect of reverberation and noise on the spatial release from masking to help the design of learning environments. Binaural room impulse responses were acquired, with noise sources at different azimuths from the listener’s head. The spatial release from masking was significantly affected by noise type and reverberation. Longer reverberation times brought to worst speech intelligibility, with speech recognition thresholds higher by 6 dB on average. Noise with an informational content was detrimental by 7 dB with respect to an energetic noise
    • …
    corecore