4,780 research outputs found

    Investigating a simple model of cutaneous wound healing angiogenesis

    Get PDF
    A simple model of wound healing angiogenesis is presented, and investigated using numerical and asymptotic techniques. The model captures many key qualitative features of the wound healing angiogenic response, such as the propagation of a structural unit into the wound centre. A detailed perturbative study is pursued, and is shown to capture all features of the model. This enables one to show that the level of the angiogenic response predicted by the model is governed to a good approximation by a small number of parameter groupings. Further investigation leads to predictions concerning how one should select between potential optimal means of stimulating cell proliferation in order to increase the level of the angiogenic response

    The Children and Young People’s Improving Access to Psychological Therapies (CYP IAPT) Programme in England

    Get PDF
    The Children and Young People's Improving Access to Psychological Therapies (CYP IAPT) programme was initiated in 2011 by the Department of Health. It aimed to improve the access of children, young people and their families to evidence-based psychological therapies (EBPTs) and to seek their participation in all aspects of care, service delivery and design. CYP IAPT addresses the broad range of mental health difficulties commonly presenting to community-based child and adolescent mental health services (CAMHS). The programme took advantage of pre-existing CAMHS partnerships between public commissioners of mental health services and the NHS, local authorities and the charity and voluntary sector service providers. In CYP IAPT, mandatory routine outcome monitoring (ROM) measures of user participation typically take the form of standardized questionnaires used before each treatment session to gauge the severity of the patient's problems, their sense of progress towards their goals, and the extent to which their expectations of treatment were met

    An Efficient Algorithm for Optimizing Adaptive Quantum Metrology Processes

    Full text link
    Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence

    High pressure Ca-VI phase between 158-180 GPa: Stability, electronic structure and superconductivity

    Full text link
    We have performed ab initio calculations for new high-pressure phase of Ca-VI between 158-180 GPa. The study includes elastic parameters of mono- and poly-crystalline aggregates, electronic band structure, lattice dynamics and superconductivity. The calculations show that the orthorhombic Pnma structure is mechanically and dynamically stable in the pressure range studied. The structure is superconducting in the entire pressure range and the calculated Tc (~25K) is maximum at ~172 GPa, where the transfer of charges from 4s to 3d may be thought to be completed.Comment: 8 pages, 4 figures; PACS number(s): 74.70.Ad, 62.20.de, 71.20.-b, 74.20.Pq, 74.25.Kc, 74.62.Fj; Keywords: Calcium; High pressure; Electronic band structure; Phonon spectrum; Elastic constants; Superconducto

    Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators

    Get PDF
    Land management for carbon storage is discussed as being indispensable for climate change mitigation because of its large potential to remove carbon dioxide from the atmosphere, and to avoid further emissions from deforestation. However, the acceptance and feasibility of land-based mitigation projects depends on potential side effects on other important ecosystem functions and their services. Here, we use projections of future land use and land cover for different land-based mitigation options from two land-use models (IMAGE and MAgPIE) and evaluate their effects with a global dynamic vegetation model (LPJ-GUESS). In the land-use models, carbon removal was achieved either via growth of bioenergy crops combined with carbon capture and storage, via avoided deforestation and afforestation, or via a combination of both. We compare these scenarios to a reference scenario without land-based mitigation and analyse the LPJ-GUESS simulations with the aim of assessing synergies and trade-offs across a range of ecosystem service indicators: carbon storage, surface albedo, evapotranspiration, water runoff, crop production, nitrogen loss, and emissions of biogenic volatile organic compounds. In our mitigation simulations cumulative carbon storage by year 2099 ranged between 55 and 89 GtC. Other ecosystem service indicators were influenced heterogeneously both positively and negatively, with large variability across regions and land-use scenarios. Avoided deforestation and afforestation led to an increase in evapotranspiration and enhanced emissions of biogenic volatile organic compounds, and to a decrease in albedo, runoff, and nitrogen loss. Crop production could also decrease in the afforestation scenarios as a result of reduced crop area, especially for MAgPIE land-use patterns, if assumed increases in crop yields cannot be realized. Bioenergy-based climate change mitigation was projected to affect less area globally than in the forest expansion scenarios, and resulted in less pronounced changes in most ecosystem service indicators than forest-based mitigation, but included a possible decrease in nitrogen loss, crop production, and biogenic volatile organic compounds emissions

    A Bayesian method for microseismic source inversion

    Get PDF
    Earthquake source inversion is highly dependent on location determination and velocity models. Uncertainties in both the model parameters and the observations need to be rigorously incorporated into an inversion approach. Here, we show a probabilistic Bayesian method that allows formal inclusion of the uncertainties in the moment tensor inversion. This method allows the combination of different sets of far-field observations, such as P-wave and S-wave polarities and amplitude ratios, into one inversion. Additional observations can be included by deriving a suitable likelihood function from the uncertainties. This inversion produces samples from the source posterior probability distribution, including a best-fitting solution for the source mechanism and associated probability. The inversion can be constrained to the double-couple space or allowed to explore the gamut of moment tensor solutions, allowing volumetric and other non-double-couple components. The posterior probability of the double-couple and full moment tensor source models can be evaluated from the Bayesian evidence, using samples from the likelihood distributions for the two source models, producing an estimate of whether or not a source is double-couple. Such an approach is ideally suited to microseismic studies where there are many sources of uncertainty and it is often difficult to produce reliability estimates of the source mechanism, although this can be true of many other cases. Using full-waveform synthetic seismograms, we also show the effects of noise, location, network distribution and velocity model uncertainty on the source probability density function. The noise has the largest effect on the results, especially as it can affect other parts of the event processing. This uncertainty can lead to erroneous non-double-couple source probability distributions, even when no other uncertainties exist. Although including amplitude ratios can improve the constraint on the source probability distribution, the measurements are often systematically affected by noise, leading to deviation from their noise-free true values and consequently adversely affecting the source probability distribution, especially for the full moment tensor model. As an example of the application of this method, four events from the Krafla volcano in Iceland are inverted, which show clear differentiation between non-double-couple and double-couple sources, reflected in the posterior probability distributions for the source models

    Automatic Bayesian polarity determination

    Get PDF
    The polarity of the first motion of a seismic signal from an earthquake is an important constraint in earthquake source inversion. Microseismic events often have low signal-to-noise ratios, which may lead to difficulties estimating the correct first-motion polarities of the arrivals. This paper describes a probabilistic approach to polarity picking that can be both automated and combined with manual picking. This approach includes a quantitative estimate of the uncertainty of the polarity, improving calculation of the polarity probability density function for source inversion. It is sufficiently fast to be incorporated into an automatic processing workflow. When used in source inversion, the results are consistent with those from manual observations. In some cases, they produce a clearer constraint on the range of high-probability source mechanisms, and are better constrained than source mechanisms determined using a uniform probability of an incorrect polarity pick

    Chiral Reductions in the Salam-Sezgin Model

    Full text link
    Reductions from six to four spacetime dimensions are considered for a class of supergravity models based on the six-dimensional Salam-Sezgin model, which is a chiral theory with a gauged U(1) R-symmetry and a positive scalar-field potential. Reduction on a sphere and monopole background of such models naturally yields four-dimensional theories without a cosmological constant. The question of chirality preservation in such a reduction has been a topic of debate. In this article, it is shown that the possibilities of dimensional reduction bifurcate into two separate consistent dimensional-reduction schemes. One of these retains the massless SU(2) vector gauge triplet arising from the sphere's isometries, but it produces a non-chiral four-dimensional theory. The other consistent scheme sets to zero the SU(2) gauge fields, but retains the gauged U(1) from six dimensions and preserves chirality although the U(1) is spontaneously broken. Extensions of the Salam-Sezgin model to include larger gauge symmetries produce genuinely chiral models with unbroken gauge symmetries.Comment: 37 page
    • …
    corecore