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S U M M A R Y
The polarity of the first motion of a seismic signal from an earthquake is an important constraint
in earthquake source inversion. Microseismic events often have low signal-to-noise ratios,
which may lead to difficulties estimating the correct first-motion polarities of the arrivals.
This paper describes a probabilistic approach to polarity picking that can be both automated
and combined with manual picking. This approach includes a quantitative estimate of the
uncertainty of the polarity, improving calculation of the polarity probability density function
for source inversion. It is sufficiently fast to be incorporated into an automatic processing
workflow. When used in source inversion, the results are consistent with those from manual
observations. In some cases, they produce a clearer constraint on the range of high-probability
source mechanisms, and are better constrained than source mechanisms determined using a
uniform probability of an incorrect polarity pick.
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1 I N T RO D U C T I O N

First-motion-based source inversion of earthquakes can be used to
constrain nodal planes and to help estimate the source parameters.
The use of first-motion polarities was proposed by Nakano (1923)
and first implemented by Byerly (1926). These first-motion polar-
ities of the phase arrivals provide an important constraint on the
focal mechanism.

There are several source inversion approaches that utilize first-
motion polarities to determine the source type, such as FPFIT
(Reasenberg & Oppenheimer 1985), which uses P-polarities to de-
termine the double-couple source, HASH (Hardebeck & Shearer
2002, 2003), which can also incorporate amplitude ratios in de-
termining the double-couple source, and FOCMEC (Snoke 2003),
which uses P, SH and SV polarities and amplitude ratios to search
for double-couple sources. These inversion approaches are often
limited (as in these three cases) to a double-couple source model.

Manual polarity picking is time consuming, especially for large
microseismic data sets with large numbers of receivers and low
signal-to-noise ratios (SNRs). Modern workflows often process the
data automatically, so the addition of a slow manual step into the
automated workflow is undesirable.

The first motion of a seismic signal can often be hard to dis-
cern from background noise and filter artefacts, especially for
low-magnitude events. Consequently, a robust first-motion source

∗Now at: McLaren Applied Technologies, McLaren Technology Centre,
Chertsey Road, Woking, United Kingdom.

inversion requires some understanding of the likelihood of an in-
correct polarity measurement. While the human eye and judgement
are often correct when manually picking the polarity of an arrival
on a seismic trace, it is usually recorded simply as being either pos-
itive or negative, although additional information in the pick such
as whether it is impulsive or emergent, as well as the pick weight,
can be used as indicators of the polarity pick quality. Determination
of the first motion using a binary classification does not allow the
assignment of any quantitative value to reflect the level of mea-
surement uncertainty. Many automatic approaches which can be
used to determine polarities usually produce results with a binary
classification (Baer & Kradolfer 1987; Aldersons 2004; Nakamura
2004).

One common approach to deal with errors in the polarity picks
is to allow a certain number of mistaken polarities in a fault plane
solution (Reasenberg & Oppenheimer 1985); another is to provide a
probability of a mistaken pick (Hardebeck & Shearer 2002, 2003).
Nevertheless, these approaches do not account for how likely it is
that an interpreter picks an arrival incorrectly, because this depends
on both the noise on the particular trace and the arrival character-
istics, such as whether the arrival onset is impulsive or emergent.
Consequently, the probability of an incorrect pick differs for each
arrival.

The approach described in this paper eschews this binary classi-
fication for the polarity observations. Instead the probability of an
arrival being a positive or negative polarity is calculated from the
waveform. This allows the inclusion of uncertainty in the arrival in
a quantitative assessment of the polarity, and can be incorporated in
the earthquake source inversion approach of Pugh et al. (2016).
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Figure 1. Histogram of 1791 arrival time pick differences between auto-
matic and manually refined picks. The vertical black lines show the mean
shift for each pick type. The top histogram is for P arrivals, and the bottom
shows S arrivals. Typical frequency of the arrival is ∼10 Hz. Automatic picks
were made using the coalescence microseismic mapping method (Drew et al.
2013) on microseismic data from the Askja region of Iceland. The automatic
picks were made using an STA window of 0.2 s and an LTA window of 1.0 s.

2 B AY E S I A N P O L A R I T Y P RO B A B I L I T Y
D E T E R M I NAT I O N

It is possible to determine the polarity of any given waveform at
any point; doing this to the whole waveform retains the polarity
information, while discarding both amplitude and phase informa-
tion. Consequently, determining the arrival polarity is reduced to
selecting which time, t, is representative of the correct arrival pick.

A basic approach used for manual determination of polarities can
be broken down into two steps:

(1) Look for the next amplitude maximum or minimum after the
arrival-onset time t in the waveform.

(2) Determine the polarity from the type of stationary value,
with positive polarity corresponding to an amplitude maximum and
negative to a minimum).

Such an approach is straightforward computationally. The polar-
ity can be described at a given time t by a function, pol(t), which
takes values switching between −1 and 1, for the next maximum or
minimum.

Arrival-time picks are often imprecise with respect to the first
motion of the arrival because of noise effects. Furthermore, when
using automated pickers, the choice of picking approach often leads
to a later triggering compared to manually refined picks (Fig. 1).
However, manually refined picks can be affected by personal prefer-
ences, leading to different manual arrival-time picks on the arrival
phase by different people. For an uncertain arrival-time pick, the
identification of positive or negative polarity may not be meaning-
ful, as it may not refer to the true first arrival. Therefore, this issue
can be overcome by estimating the probability of the first motion
being positive or negative.

The amplitude change of the peak of the candidate first arrival
can provide an indication of the likelihood that it has been affected
by noise. Therefore, the amplitude change could be used to give the
arrival some quality weighting. However, it may be more precise
to consider how likely the polarity is to be positive based on the
measured noise level, that is, by determining the probability that
the amplitude change of the candidate first arrival is not due to the
noise.

2.1 Polarity probability function

The probability density function (PDF) of a given signed amplitude
A having polarity Y = y, where y = ±1, at an instrument is given
by a step function such as the Heaviside step function H (x) =∫ x

−∞ δ(s)ds, defined in terms of the delta function δ(x). This PDF
is dependent on the amplitude measurement error, ε, which arises
both from the background noise and the measurement error in the
device. The measured amplitude is given by the sum of the true
amplitude and the measurement error, so, the PDF for observing a
given amplitude value is dependent on both the true amplitude and
the measurement error, and is:

p (Y = y | A, ε) = H (y (A + ε)). (1)

Marginalization (e.g. Sivia 2000) includes the measurement error
in the probability. It is assumed that only the mean and the variance
of the noise are measurable and, therefore, the most ambiguous dis-
tribution (maximum entropy) is the Gaussian distribution, as can
be shown using variational calculus (Pugh et al. 2016). This choice
of distribution is valid independent of the actual random noise dis-
tribution. However, any correlated non-random noise should be
accounted for. If more statistics of the noise are known, such as the
higher order moments, the appropriate maximum entropy distribu-
tion should be used.

For data that have been de-meaned (DC-offset corrected) over a
suitable window, the noise can be assumed to have zero mean, and
a standard deviation σmes independent of the amplitude, so that the
probability that the ε is the current amplitude error is Gaussian:

p
(
ε|σmes

) = 1√
2πσ 2

mes

e
− ε2

2σ2
mes . (2)

Marginalizing over ε gives:

p
(
Y = y | A, σmes

) =
∫ ∞

−∞
p (Y = y | A, ε) p

(
ε|σmes

)
dε, (3)

p
(
Y = y | A, σmes

) =
∫ ∞

−∞
H (y (A + ε))

1√
2πσ 2

mes

e
− ε2

2σ2
mes dε. (4)

The product yε in eq. (1) changes the sign of the noise to reflect
the polarity, but because the PDF for ε is symmetric, this change in
sign has no effect. The integral can be simplified using a behaviour
of the step function:∫ ∞

−∞
H (x + ε) f (ε) dε =

∫ ∞

−x
f (ε) dε, (5)

which gives:

p
(
Y = y | A, σmes

) =
∫ ∞

−y A

1√
2πσ 2

mes

e
− ε2

2σ2
mes dε. (6)

This can be rewritten, using the symmetry of the normal distribution
about the mean, as:

p
(
Y = y | A, σmes

) =
∫ y A

−∞

1√
2πσ 2

mes

e
− ε2

2σ2
mes dε

= 1

2

(
1 + erf

(
y A√
2σmes

))
. (7)

It is important to note that the behaviour of this PDF produces a
higher probability for stations with larger amplitudes, as these sta-
tions are more likely to have arrival polarities that are not perturbed
by noise. However, if the noise standard deviation (σmes) is low, the
PDF approaches the step function, reducing this effect.
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Figure 2. Distribution of the positive (red) and negative (blue) polarity
probabilities for 100 000 samples of a simple synthetic trace with added
random Gaussian noise. The original waveform had a positive polarity. The
time pick was not changed, but the time uncertainty was increased as the
noise level increased. The dashed line indicates a 50 per cent probability of
positive or negative arrival, corresponding to no net information, and the
solid lines indicate a smoothed mean of the positive and negative polarity
probabilities (e.g. eq. 14).

Since polarity observations are either positive or negative, be-
cause the nodal region of a moment tensor source is infinitesimally
thin, the probability for both cases should sum to unity.

2.2 Arrival polarity probability

Section 2.1 has given the PDF for observing a polarity given some
amplitude and noise level. However, there is an additional time de-
pendence when estimating the polarity of an arrival. For an arrival,
the PDF for a positive polarity, Y = +1, depends on the amplitude
at a given time. The amplitude can be written in terms of the po-
larity function, pol(t), and the absolute amplitude change between
stationary values, �(t), and noise standard deviation, σmes, giving:

p
(
Y = + | t, σmes

) = 1

2

(
1 + erf

(
pol(t).�(t)

2σmes

))
, (8)

where the standard deviation from eq. (7) has been multiplied by
√

2
to account for using the amplitude change between maximum and
minimum, rather than the noise amplitude as described in Section
2.1. This PDF has been marginalized (Section 1.3, Sivia 2000) with
respect to the measurement noise, but retains dependence on the
noise standard deviation (σmes). However, it is also necessary to
marginalize for the arrival-time error to account for this uncertainty
in the arrival time. This uncertainty depends on the arrival, but could
be based on the perceived quality of the pick on some scale such
as the common 0–4 scale (best–worst) from HYPO71 (Lee & Lahr
1975).

A possible, although perhaps arbitrary, probability distribution
for pick accuracy is a Gaussian distribution around the pick. How-
ever, the method described below is independent of the form of
distribution chosen. For a Gaussian distribution around the pick,
the probability that the arrival time is actually at t for a given
arrival-time pick (τ ) with standard deviation (σ τ ) is:

p (t | τ, στ ) = 1√
2πστ

2
e
− (t−τ )2

2σ2
τ . (9)

Figure 3. Plot of trace and the associated PDFs for the different stages
of the probabilistic polarity determination. (a) shows the waveform, (b)
shows the amplitude PDFs for positive (red) and negative (blue) polarities
having accounted for noise, (c) shows the time probability function, and (d)
shows the combined PDFs for positive (red) and negative (blue) polarities
superimposed on the waveform (grey). The vertical lines correspond to the
arrival-time pick.

The arrival-time standard deviation is related to the arrival-time
uncertainty, and can be set either as a mapping from the pick quality
or from an arrival detection PDF, as discussed in Section 3.

The PDF for the polarity of an arrival is, therefore, given by the
product of the polarity probabilities (eq. 8), and the time probabili-
ties (eq. 9):

p
(
Y = + | t, τ, σmes, στ

)
= 1

2

(
1 + erf

(
pol(t).�(t)

2σmes

))
p (t | τ, στ ), (10)

p
(
Y = − | t, τ, σmes, στ

)
= 1

2

(
1 + erf

(−pol(t).�(t)

2σmes

))
p (t | τ, στ ). (11)
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Figure 4. Polarity probabilities for the arrival from Fig. 3 for different
manual prior probabilities. The red lines correspond to the positive polarity
probability, and the blue to the negative polarity probability. The solid lines
show the probabilities when the manual polarity pick is positive, and the
dashed lines show the probabilities for a negative manual polarity pick.

If a Gaussian arrival-time PDF (eq. 9) is used, the PDFs from eqs
(10) and (11) are given by:

p
(
Y = + | t, τ, σmes, στ

)
= 1

2

(
1 + erf

(
pol(t).�(t)

2σmes

))
1√

2πστ
2

e
− (t−τ )2

2σ2
τ , (12)

p
(
Y = − | t, τ, σmes, στ

)
= 1

2

(
1 + erf

(−pol(t).�(t)

2σmes

))
1√

2πστ
2

e
− (t−τ )2

2σ2
τ . (13)

These PDFs are still time dependent, but this can be marginalized
by integrating over all possible arrival times. In most cases, it is
sufficient to take large limits (tmin and tmax ) compared to the width of
the arrival-time PDF , where the arrival-time PDF is approximately
zero:

p
(
Y = +|τ, σmes, στ

)
=

∫ tmax

tmin

1

2

(
1 + erf

(
pol(t).�(t)

2σmes

))
1√

2πστ
2

e
− (t−τ )2

2σ2
τ dt.

(14)

Figure 5. Plot of the trace and associated PDFs for the different stages, same type of plot as Fig. 3. The left column shows the STA/LTA detection function
used as the arrival-time PDF, while the right shows the Gaussian approximation generated from Drew et al. (2013). The STA/LTA parameters chosen were
based on those described by Drew et al. (2013, Section 2.1); here, the STA window size is one period of the signal.
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Figure 6. Example arrival-time PDF constructed from different STA/LTA
trigger functions. The onset function is shown in black and the example
P-wave arrival is shown in grey. (a) shows the recursive STA/LTA function
from ObsPy (Beyreuther et al. 2010). (b) shows the arrival-time PDF given
by eq. (19) peaked in the middle of the onset. (c) and (d) show the truncated
CMM STA/LTA detection function and the approximated Gaussian. (e)
and (f) show the RPA/LPA approach of Zahradnı́k et al. (2014) and the
approximate Gaussian fit using the same approach as for the CMM STA/LTA
function.

In the case of a Gaussian arrival-time PDF, suitable limits are
τ ± 10σ τ . which have probabilities that are approximately zero
(∼10−23). Similar marginalization of the PDF from eq. (13) gives
the probability of a negative arrival, p

(
Y = −|τ, σmes, στ

)
.

The probabilities calculated by marginalizing with respect to time
are normalized provided the arrival-time PDF (eq. 9) is normalized.
This is clear because the anti-symmetry of the error function, erf ,
means that the sum of the amplitude probabilities is time indepen-
dent and sums to unity:

p
(
Y = +|τ, σmes, στ

) + p
(
Y = −|τ, σmes, στ

)
=

∫ tmax

tmin

p (t | τ, στ ) dt, (15)

p
(
Y = +|τ, σmes, στ

) + p
(
Y = −|τ, σmes, στ

) ≈ 1. (16)

When the uncertainty, σ τ , in the Gaussian arrival-time PDF
(eq. 9) increases, more stationary points on the waveform have non-

Figure 7. Example polarity PDF plot; the positive polarity probabilities are
given by the length of the bar above the axis and the negative by the length
of the bar below the axis. The darker the shading, the better the manual
pick quality. The solid bars correspond to manual polarity pick directions,
and cross-hatched bars correspond to positive or negative polarities with no
manual polarity picks. The station names are given beneath the correspond-
ing observation, on the x-axis. STA1 has p

(
Y = −|τ, σmes, στ

) = 0.87
and a pick quality of 0 on the HYPO71 0-4 (best-worst) scale (Lee &
Lahr 1975), along with a manually observed negative polarity. STA2 has
p

(
Y = +|τ, σmes, στ

) = 0.98, a pick quality of 1, and a manually observed
positive polarity. STA3 has a pick quality of 2 and no manually observed po-
larity. STA4 has a pick quality of 3 and, again, no manually observed polarity,
while STA5 has a pick quality of 4 and no manually observed polarity.

zero arrival-time probabilities, and the arrival-time PDF is flattened.
This can be seen in Fig. 2, which shows that for a synthetic arrival,
when the arrival-time uncertainty and noise level are increased, the
probabilities tend towards 0.5.

Fig. 3 shows the different steps for evaluating the polarity proba-
bilities for an example synthetic arrival with white noise. The calcu-
lated probabilities for the pick are: p

(
Y = +|τ, σmes, στ

) = 0.33,
and p

(
Y = −|τ, σmes, στ

) = 0.67.
The approach described in this paper is not intended to produce

a first motion estimate in the former binary classification, but in-
stead to leave the results as probabilities directly. Nevertheless, it
is possible to map the probabilities to the binary polarities, as may
be desirable for event classification. In this case, some significance
level should be chosen for assigning the polarity values,

Y =

⎧⎪⎨
⎪⎩

+1 p
(
Y = +|τ, σmes, στ

)
� q

0 q > p
(
Y = +|τ, σmes, στ

)
> 1 − q

−1 p
(
Y = +|τ, σmes, στ

)
� 1 − q

, (17)

where q is a manually chosen probability value which reflects the
desired confidence in the polarity direction estimation. In this case
the values between q and 1 − q have been assigned a polarity
of 0, corresponding to no reported measurement, rather than zero
polarity. Alternatively, the probabilities could be represented graph-
ically as shown in Section 4, allowing for easy comparison between
different events.

2.3 Choosing the arrival-time PDF

This approach is independent of the choice of time PDF. When
using automated picking, the PDF can be chosen based on both
the automated picker used and any observed shifting produced in
a manual review of the picks (Section 3). The arrival-time PDF
should have significant probability over the onset of the arrival,
rather than the whole arrival, as this can lead to large numbers of
stationary points with significant arrival-time probabilities, leading
to an uncertain polarity probability estimate.
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Figure 8. PDF plots for varying arrival-time picks on the same waveform.
The original arrival-time pick is shown in (a), with randomly varied arrival-
time picks in (b–f). The waveform is shown in grey, with the positive polarity
PDF in red and the negative polarity PDF in blue. The vertical lines corre-
spond to the arrival-time picks. The arrival-time picks were varied by adding
a time shift randomly sampled from a Gaussian distribution.

Fig. 1 shows a histogram of P and S arrival-time shifts for the
coalescence microseismic mapping (CMM) autopicker (Drew et al.
2005, 2013) for all pick weights. The mean shift is non-zero, likely
due to poor-quality picks that are improved manually and the CMM
tendency to pick on the peak rather than the onset. Therefore, the
choice of a Gaussian probability around the CMM pick is not a poor
one, although the mean could be chosen to be a small time shift (δt)
before the automatic pick, to compensate for the CMM tendency to
pick slightly late:

p (t | τ, στ ) = 1√
2πστ

2
e
− (t−τ+δt)2

2σ2
τ . (18)

The arrival-time PDF must be arrival specific, so as to reflect
the confidence in the individual arrival-time estimate, although the
shape could be derived from an empirical distribution of arrival
times for a subset of events in a data-set, such as that in Fig. 1, with
the width scaled by some measure of the arrival-time uncertainty.
Alternatively, as discussed below, the arrival-time PDF can be based

on some characteristic function of the data, perhaps as used in an
automated picker (e.g. short-term averaging/long-term averaging,
STA/LTA).

2.4 Manual and automated picking

This probabilistic approach produces an estimate of the likelihood of
the polarity which can be combined with manual picking by using
the manual observations as a prior probability for the automated
measurements. The choice of prior probability for the polarity can
have a large effect (Fig. 4). If the manual prior is large, the effect of
the polarity probabilities is negligible, although as it is reduced to
the null prior (pprior = 0.5), the effect become more significant.

The prior has a strong effect, dominating the probabilities even
for the incorrect polarity direction, but there is a clear difference in
Fig. 4 between the correct (negative) and incorrect (positive) prior
directions, with a much sharper trend towards a value of 1 for the
incorrect prior direction. Consequently, even if the prior probability
is large and in the incorrect direction, the resultant polarity proba-
bility for the correct direction will be larger than the corresponding
prior probability value, and the probability is corrected towards the
true value.

3 I N T E G R AT I O N W I T H AU T O M AT E D
M O N I T O R I N G

The fast calculation speed allows this polarity estimation to be inte-
grated into an automated processing workflow. This polarity infor-
mation, in conjunction with other measurements such as amplitude
ratios, can produce an estimate of the event source, allowing for
better data quality control from observations and helping to flag in-
teresting events in near real time. The accuracy of such an approach
strongly depends on the accuracy of the arrival-time pick. As the
error is increased, the polarity probabilities will tend towards 0.5
(Fig. 2). Therefore, provided the automated time picking is accurate,
the polarity probabilities produced should show good consistency
and, although manual refinement could still improve the result, the
results from eq. (14) should improve the source constraints.

The arrival-time PDF can be based on some characteristic func-
tion from the chosen automated picking method. The CMM event
detection algorithm (Drew et al. 2013) uses an STA/LTA detection
function, which could be used as the arrival-time PDF in eqs (10)
and (11). In CMM, the detection function is fitted with a Gaussian
approximation to produce an uncertainty estimate. However, Fig. 5
shows that using the STA/LTA function (eq. 1, Drew et al. 2013) or
its Gaussian approximation often produces wide arrival-time PDFs,
encompassing most of the arrival rather than just the first motion.
Furthermore, this detection function peaks away from the onset and
leads to increased uncertainty in the pick time and, therefore, poorly
defined polarity probabilities. Both the Gaussian approximation and
the plain STA/LTA function show similar performance, providing
little constraint on the polarity. Nevertheless, the maximum proba-
bility (Fig. 5d) is in the negative direction, which is consistent with
the arrival (Fig. 5a).

Baer & Kradolfer (1987) introduced the concept of ‘phase detec-
tors’ and ‘phase pickers’. Phase detectors are relatively imprecise,
and will be improved by human re-picking. However, phase pickers
should produce results that are comparable to those picked manu-
ally. Therefore, it may be better to use a phase picker to determine
the onset and construct the arrival-time PDF more accurately. There
are many approaches to accurate onset pickers such as the methods
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Figure 9. PDF plots for varying Gaussian and boxcar noise levels for the same waveform. The noise levels are: (a) No noise, (b) SNR = 10, (c) SNR = 5, (d)
SNR = 3, (e) SNR = 2, and (f) SNR = 1.2. The waveform is shown in grey, with the positive polarity PDF in red and the negative polarity PDF in blue. The
vertical lines correspond to the arrival-time pick.

discussed by Baer & Kradolfer (1987): STA/LTA pickers (Allen
1978, 1982; Trnkoczy 2012); auto-regressive pickers (Takanami &
Kitagawa 1988, 1991; Nakamura 2004); stationary analysis pickers
(Nakamula et al. 2007); kurtosis based pickers (Hibert et al. 2014;
Ross & Ben-Zion 2014); right to left pick averaging (RPA/LPA)
(Zahradnı́k et al. 2014), as well as many others. Withers et al. (1998)
provide an overview of several of these different approaches, as do
Di Stefano et al. (2006). Several of the STA/LTA-based approaches
are shown in Fig. 6. Determining the parameters for these automated
pickers is not always straightforward, and parameters must often be
adjusted based on the general signal characteristics (Trnkoczy 2012;
Zahradnı́k et al. 2014).

Many of these approaches produce characteristic functions that
have a sharp increase at the onset (Ross & Ben-Zion 2014, fig. 3).
So a possible definition of the arrival-time PDF could be a Gaussian
using the size and onset of the peak in the characteristic function
(FC) as an indicator of the uncertainty, for example,

στ = τmax − τmin

FC (t = τmax) − FC (t = τmin)
, (19)

where τmax is the time of the maximum in the peak, and τmin is the
time of the minimum. Fig. 6(b) shows an example of this arrival-
time PDF for a recursive STA/LTA pick, which is more focussed
on the first arrival, rather than the whole of the arrival phase. Fig. 6
shows that neither the CMM STA/LTA nor the RPA/LPA approaches
is as good at resolving the arrival as the recursive STA/LTA method.

4 E X A M P L E S

In the following examples, manual arrival-time picks were made
on both the synthetic and real data. The arrival noise levels were
measured in a time window from half way between the start of the
trace and the P-arrival. The exact window was constructed based
on the P arrival-time uncertainty so as to remove any significant
probability of any signal occurring in the noise window. The noise
estimate is important in eq. (14), but since the stationary points
used in this approach are by definition at the extrema of the values,
the result from eq. (7) is often close to 1 or 0 (Fig. 3b), so errors
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Figure 10. Polarity PDF plots (Fig. 7) with synthetic events for different numbers of stations and different noise environments. (a) has arrivals with a
signal-to-noise ratio around 5, while (b) and (c) have arrivals with a signal-to-noise ratio of 7 and (d) has arrivals with a signal-to-noise ratio around 10.

Figure 11. Polarity PDF plot (Fig. 7) of solutions from SH phase picking
of a synthetic event with a signal-to-noise ratio of approximately 5.

in the noise estimate have less effect than errors in the arrival-time
uncertainty estimate.

4.1 Polarity PDF plot

To present both the manual polarity picks and the polarity prob-
ability requires a new type of plot. Fig. 7 shows one approach.
The positive polarity probabilities are represented as bars above the
axis, and the negative below. Darker shading indicates better manual
arrival-time pick quality. The solid bars correspond to manual polar-
ity picks, and cross-hatched bars correspond to directions without a
manually picked polarity. This allows an easy comparison between
the manual polarity picks and the results from this approach.

4.2 Synthetic examples

The behaviour of the method for different noise levels and arrival-
time picks was tested using synthetic arrivals generated by finite-
difference modelling (Bernth & Chapman 2011). Fig. 8 shows the
effects of varying the arrival-time pick on a trace with random Gaus-
sian noise added to give an amplitude SNR of 10. The arrival-time
uncertainty was left at the initial value (σ τ = 0.01s = 1 sample),
meaning that even small variations in the trace could cause large
changes in the estimated probability. For this example, the probabil-
ity of a negative arrival varied between 0.39 and 0.79, with the low
probability values not consistent with the observed negative polarity
of the arrival without noise. However, the inconsistent probabilities
occur due to the arrival-time picks being close to the positive part
of the arrival, and later than the true pick. This indicates the impor-
tance of accurate arrival-time picks and good characterization of
the arrival-time PDFs, either as a Gaussian approximation around
the arrival-time pick or using a detection function.

The background noise levels for a given pick time were varied
using two different noise models: Gaussian and boxcar (Fig. 9).
These show that the accuracy is good for low noise levels, but as the
noise level approaches that of the signal, the noise can have very
large effects on the observed waveform and polarity. There is a small
dependence on the noise model, with mainly lower probabilities
estimated from the positive polarity for the synthetic arrivals with
boxcar noise. However, the values are still consistent with those
from the Gaussian noise model, suggesting that the Gaussian noise
is not a bad approximation. In practice the traces with low SNR
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Table 1. Comparison of automated and manual polarity picks for the 2007/7/6 20:47 Upptyppingar event
(White et al. 2011). Missing manual polarities are unpicked. Time pick qualities are manually assigned as
good or poor with associated time pick errors of 0.01 s and 0.5 s. These qualities would correspond to 0
and 3 from the HYPO71 pick weighting (Lee & Lahr 1975). p(Y = +|τ, σmes, στ ) is the probability of a
positive polarity and p(Y = −|τ, σmes, στ ) the probability of a negative polarity. The bolded probabilities
correspond to values larger than 0.6 which agree with the manual polarity pick for good (pick quality 0)
picks.

Station Time pick quality Manual polarity p
(
Y = +|τ, σmes, στ

)
p

(
Y = −|τ, σmes, στ

)
ADA Good + 0.94 0.06
BRU Poor + 0.51 0.49
DDAL Poor 0.50 0.50
DYNG Poor – 0.50 0.50
FREF Good – 0.19 0.81
HELI Poor 0.50 0.50
HERD Good + 0.70 0.30
HETO Good + 0.90 0.10
HOTT Good – 0.30 0.70
HRUT Good + 0.99 0.01
HVA Good + 0.94 0.06
JOAF Poor 0.50 0.40
KOLL Good + 0.65 0.35
KRE Good – 0.06 0.94
LOKA Good + 0.94 0.06
MIDF Good – 0.30 0.70
MKO Good – 0.06 0.94
MOFO Good – 0.10 0.90
MYVO Good + 0.70 0.30
RODG Good – 0.30 0.70
SVAD Good + 0.90 0.10
UTYR Good – 0.09 0.91
VADA Good – 0.30 0.70
VIBR Good + 0.94 0.06
VIKR Good 0.69 0.31
VISA Poor 0.50 0.50
VSH Good + 0.94 0.06

Figure 12. Polarity PDF plot (Fig. 7) for the 2007/07/06 20:47 event (White
et al. 2011) shown in Table 1.

(Figs 9d–f) would probably be considered difficult to pick and,
therefore, be assigned a larger time pick error.

These examples also demonstrate why an arrival-time PDF with
some shift (eq. 18) may be better, as the arrival-time picks in Figs 8
and 9 are closer to the onset rather than the first peak. Accordingly,
the first motions are more likely to be after the pick time rather than
equally likely before and after.

As shown in these examples, the approach is robust and can
provide a qualitative value on the probability of the polarity being
up or down, but the probabilities are inherently dependent on the
accuracy of the arrival-time pick and the trace noise levels. Traces
with a high SNR should produce a reliable result, but as the time pick
uncertainty increases, the polarity probability tends to 0.5 (Fig. 2).

Fig. 10 shows that the automated approach usually agrees with
the manually observed polarities, especially in the low-noise cases.
However, as the noise levels increase, the solutions occasionally

Figure 13. Example polarity PDFs and waveform from the 2007/07/06
20:47 event for station KRE. The positive polarity PDF is shown in red and
the negative polarity PDF is shown in blue and as negative for clarity. The
(scaled) waveform is in grey; the P-arrival-time pick and manual polarity
pick are indicated by the arrow. The time-marginalized automated polarity
probabilities are p(Y = +|τ, σmes, στ ) = 0.06 and p(Y = −|τ, σmes, στ ) =
0.94.

disagree with the manually observed polarities, although this is
expected in the low-SNR examples.

This approach can also be used when evaluating S-phase po-
larities, even though these require rotation into the correct ray
orientation to measure them. Consequently, they cannot easily
be determined without an estimate of the hypocentre, unlike the
P-wave polarities. Fig. 11 shows an example of SH-wave mea-
surements from a synthetic event with an amplitude SNR of 5.
The SH polarities were manually picked on the transverse compo-
nent after the location was determined by rotating into the vertical,
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Figure 14. Polarity PDF plots (Fig. 7) for example events from the Krafla central volcano in the Northern Volcanic Zone of Iceland.

radial and transverse (ZRT) components. The noise levels were
again estimated by windowing before the arrival. For these observa-
tions, any increased signal due to the P-arrival should be considered
as noise when estimating the SH-polarity probability, so the window
was taken to include the P arrival time. The polarity probabilities
show good consistency with the manually picked polarities.

4.3 Real data

Table 1 shows a comparison between the automated and manual
polarity picks for one event from a July 2007 swarm beneath Mount
Upptyppingar in Iceland (White et al. 2011), with the polarity PDF
plot shown in Fig. 12. The manual observations and automatically
determined solutions are consistent with good-quality arrival-time
picks producing probabilities larger than 0.7 and often larger than
0.9. The poor picks with large time uncertainties show that the
resulting probabilities tend to 0.5 each, as discussed in Section 2.
Fig. 13 shows an example polarity PDF for one of the stations.

The results of the automated polarity picking for several events
from the Krafla region of Iceland are shown in Fig. 14. For the most
part, the automated polarity probabilities agree with the manual
polarities; although there a few cases that disagree; these are usually
caused by an error in the manual arrival-time pick. This error made
the arrival-time PDF a poor approximation, often due to early or late
picks being assigned a high pick quality, leading to narrow arrival-
time PDFs before or after the first arrival. The strong agreement of
the observations suggests that this approach works well with real
data and not just with synthetically generated events.

Fig. 15 shows the results from testing the polarity probability
estimation with added noise levels on two traces from the Upptyp-
pingar and Krafla data shown above. The results are consistent with
those shown in Fig. 2, although there is a faster decay to the 0.5
probability line, and a wider spread of results, due to the more com-
plex signal. Figs 16 and 17 show the effects of varying the time pick
and noise level on the real data, and again the results are consistent
with those shown in Figs 8 and 9.
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Figure 15. Distribution of the positive (red) and negative (blue) polarity probabilities for 100 000 samples of two real traces from Upptyppingar and Krafla,
left and right columns, respectively, with added random Gaussian noise. The original waveform for the left plot had a negative polarity, and the right plot had a
positive polarity. The arrival-time pick position was not changed, but the time uncertainty was increased as the noise level increased. The dashed line indicates
a 50 per cent probability of positive or negative arrival, corresponding to no net information, and the solid lines indicate a smoothed mean of the positive and
negative polarity probabilities.

5 S O U RC E I N V E R S I O N

The Bayesian approach proposed by Pugh et al. (2016) can easily
be extended to include the automated polarity observations. The
PDF for the observed polarity at a given time is dependent on the
theoretical amplitude (A), the measurement uncertainty (ε(t)), and
the observed amplitude change (�(t) ≥ 0) (cf. eq. 1):

p (pol(t)|A, �(t), ε(t), t) = H

(
pol(t)

(
A + ε(t)

�(t)
|A|

))
. (20)

The theoretical amplitude depends on the source model.
Given that the standard deviation of the background noise (σ )

can be estimated, the simplest noise model for the uncertainty, ε(t),
on �(t) is a Gaussian distribution, with standard deviation

√
2σ due

to �(t) corresponding to the amplitude change. Marginalizing with
respect to the uncertainty gives (cf. eq. 4):

p(Y (t) = pol(t)|A, �(t), σ, t)

=
∫ ∞

−∞

H
(

pol(t)
(

A + ε(t)
�(t)

|A|
))

√
2πσ 2

e− ε(t)2

2σ s dε(t). (21)

Following Section 2.1, the PDF is:

p (Y (t) = pol(t)|A, �(t), σ, t)

= 1

2

(
1 + erf

(
pol(t)�(t)sgn (A)

2σ

))
. (22)

This is not marginalized with respect to time, but there is a sim-
plification that can be made here. The signum function in the PDF
is equivalent to writing the PDF using the Heaviside step function
H(x):

p(Y (t) = pol(t)|A, �(t), σ, t)

= H (A)
1

2

(
1 + erf

(
pol(t)�(t)

2σ

))

+ H (−Ai )
1

2

(
1 + erf

(−pol(t)�(t)

2σ

))
. (23)

This form makes it easy to marginalize with respect to time because
the modelled amplitude is independent of the time, so the time-
marginalized PDF for source inversion is:

p (ψ |A, σ, τ, στ ) = H (A) ψ + H (−A) (1 − ψ), (24)

where ψ is the time-marginalized positive polarity PDF for the
arrival (eq. 14).

As with the manually determined polarity PDF from Pugh et al.
(2016), it is possible that there could be a receiver orientation error
with probability 	 , leading to a flipped polarity, so eq. (24) can be
extended to:

p (ψ |A, σ, τ, στ ,	 )

= 1 − 	 + (2	 − 1) [H (A) + ψ − 2H (A) ψ]. (25)

This is the polarity probabilities likelihood, which is included in
the Bayesian source inversion by substituting into the source like-
lihood (Pugh et al. 2016, eqs 17 and 18) to give (using the same
nomenclature as table 2 from Pugh et al. 2016):

p
(
d′ | M, τ, k

)

=
∫∫ M∑

j=1

N∏
i=1

[
p

(
ψi | Ai = ai ; j · M̃, σi , 	i , τi , στi

)

× p
(
Ri | Ai = ai ; j · M̃, σi , τi

)]
× p (σ ) p (	 ) dσd	, (26)

for the source likelihood including location uncertainty, and:

p
(
d′ | M, τ, k

)

=
∫∫ Q∑

k=1

M∑
j=1

N∏
i=1

[
p

(
ψi | Ai = ai ; jk · M̃, σi ,	i , τi , στi

)

× p
(
Ri | Ai = ai ; jk · M̃, σi , τi

)]
× p (σ ) p (	 ) dσd	, (27)
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Figure 16. PDF plots for varying arrival-time picks for two real waveforms from Upptyppingar and Krafla, left and right columns, respectively. The original
arrival-time pick is shown in (a), with randomly varied arrival-time picks in (b–f). The waveform is shown in grey, with the positive polarity PDF in red and
the negative polarity PDF in blue. The vertical lines correspond to the arrival-time pick. The arrival-time picks were varied by adding a time shift randomly
sampled from a Gaussian distribution.

for the source likelihood including location and velocity model
uncertainty. These PDFs (eqs 26 and 27) have observed data, d′

consisting of polarity probabilities, ψ , and amplitude ratios, R, and
known parameters, k, consisting of the arrival-time errors στ , and
the ray paths, ai ; j for receiver i and location position j, calculated
from the station locations and velocity model, with ai ; jk correspond-
ing to the ray paths for receiver i, source location j and velocity
model k. The PDFs are evaluated for the moment tensor, M, with
six vector, M̃, with theoretical amplitudes, Ai , given by the inner
product of the receiver ray paths and the moment tensor six-vector.

Care must be taken with the data independence. Manual polarity
observations must only be used in the source inversion in combina-
tion with automated polarity observations as a prior, otherwise the
resulting source PDF will be artificially sharpened.

This quantitative method for including noise in the polarity de-
termination is unlike the more qualitative approaches for manual
polarity observations such as those described by Brillinger et al.
(1980), Walsh et al. (2009) and Pugh et al. (2016).

5.1 Examples

The source inversion results for a synthetic double-couple event
and a real event from the Upptyppingar dyke swarm in 2007 (White
et al. 2011) were evaluated using the Bayesian approach of Pugh
et al. (2016), adapted for automated results (eqs 26 and 27). The
results for the full moment tensor inversion are plotted on a lune
plot (Tape & Tape 2012). Fig. 18 shows the positions of the different
source types on the plot.

The results for the source inversion using automated picking
resemble those of the manual picking (Figs 19–22), but there is
usually a wider range of possible solutions because most of the
proposed solutions have at least a small non-zero probability. In
some cases, the solution can be improved by additional constraint
from receivers with no manual polarity pick, but a suitable arrival-
time pick. This is shown by the example from the Upptyppingar dyke
swarm, which has a few receivers without manual polarity picks but
with suitable arrival-time picks to estimate the polarity probabilities.
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Figure 17. PDF plots for varying Gaussian noise levels on two real waveforms from Upptyppingar and Krafla, left and right columns, respectively. The noise
levels are: (a) SNR = 10, (b) SNR = 5, (c) SNR = 3, (d) SNR = 2, and (e) SNR = 1.2. The waveform is shown in grey, with the positive polarity PDF in red
and the negative polarity PDF in blue. The vertical lines correspond to the arrival-time pick.

The double-couple solutions from the automated polarity inversion
tend to have a clearer demarcation between the high-probability
solutions and the lower-probability solutions, as can be seen in
Figs 19 and 20.

A common approach to dealing with polarity uncertainties is
to allow a blanket probability of a pick being incorrect (pmispick)
(Hardebeck & Shearer 2002, 2003). This is equivalent to setting the
value of ψ in eq. (25) to either 1 − pmispick or pmispick depending on
whether the manual pick is positive or negative. Unlike the auto-
mated polarity approach, including this arbitrary blanket probability
of a mistaken pick cannot account for the most-difficult-to-pick ar-
rivals being most likely to be incorrect. Consequently, the range
of solutions is often not overly broad. The double-couple solutions
from the automated polarities in Fig. 20 show a stronger demar-
cation between the low- and high-probability solutions than those
using a blanket probability of a mistaken pick, although the ranges
are similar. The full moment tensor solutions in Fig. 20 have very
similar distributions for both of the inversions, with a less peaked
range of solutions than the ordinary manual polarity solutions from
the same event shown in Fig. 19.

Although the choice of time PDF is independent of the approach,
the CMM STA/LTA (Fig. 5) was tested as a possible PDF. Fig. 21
shows that this time PDF can work in low-noise environments, but
in a higher-noise environment it may not be possible to determine a
solution. This is clear in the solutions for the Upptyppingar event,
which has no constraint on the possible source for both the double-
couple and full moment tensor inversions because the variations
in probability are too low. The low-noise synthetic example shows
good agreement with the east-west plane, but the north-south plane
has a much larger range of high probability solutions. However, the
approach may provide some constraint on the source PDF in the
high-noise case if there are enough receivers sampling the focal-
sphere. Using an arrival-time PDF from a well calibrated onset
picker (Section 3) would provide a much larger improvement in the
source constraints.

Using manual polarity picks as a prior probability further sharp-
ens the source PDF, leading to a sharper solution than even the
manual polarities (Fig. 22). The full moment tensor solutions are
also constrained better by the prior, compared to the equivalent
solutions in Fig. 19.
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Figure 18. Example of the fundamental eigenvalue lune (Tape & Tape
2012), showing the position of the different source types. The horizontal
axis corresponds to the eigenvalue longitude γ

(− π
6 � γ � π

6

)
and the

vertical axis, the eigenvalue latitude δ
(− π

2 � δ � π
2

)
. The double-couple

point (DC) lies at the intersection of the two lines. TC+ and TC− correspond
to the opening and closing variants of the tensile crack model (Shimizu et al.
1987). The two compensated linear vector dipole (CLVD) sources (Knopoff
& Randall 1970) are also shown on the plot.

6 S U M M A RY A N D D I S C U S S I O N

The Bayesian approach to automated polarity determination pro-
posed in this paper is a quantitative approach that enables rigorous
incorporation of measurement uncertainties into the polarity prob-
ability estimates. It is an alternative approach to the traditional bi-
nary classification of polarities, and can be adapted for use with any

onset or arrival-time picking method, either manual or automatic.
The polarity probabilities estimated using this method provide a
quantitative approach for including the polarity uncertainties in the
source inversion. This contrasts with many common approaches,
including the qualitative approach for manual polarity observation
described by Brillinger et al. (1980), Walsh et al. (2009) and Pugh
et al. (2016), and the arbitrarily determined probability of a mistaken
pick (Hardebeck & Shearer 2002, 2003).

The polarity probabilities have a clear dependence on the time
pick accuracy and the noise level of the trace, requiring an accu-
rate arrival-time pick. Poorly characterized arrival-time pick un-
certainties lead to little discrimination in the polarity probabilities.
Consequently, when an automated arrival picking approach is used,
accurate onset picks with results comparable to picks made by a hu-
man are required, otherwise the resultant arrival-time PDF is usually
too wide.

The choice of arrival-time PDF can be adjusted depending on
the perceived quality of the arrival time picking approach. For an
automated picker, the arrival-time PDF peak can be shifted to just
before the pick if the automated pick tends to be late, as is the case
for the CMM STA/LTA picker. The arrival-time PDF can also be
adjusted using the pick quality estimate, such as the pick weight
(0–4 range from HYPO71 Lee & Lahr 1975), although a range with
finer discretization would prove more accurate.

In the real-world cases from the Upptyppingar volcano and Krafla
in Iceland, there are few differences between the results obtained
from manual and automated picking. The estimation of the proba-
bility of correct first motions produces a quantitative estimate of the

Figure 19. Comparison between automated polarity and manual polarity source inversions for two events, one synthetic (a) and the event from Table 1
and Fig. 12(b). The first and second columns are the double-couple source PDFs for the automated polarity probabilities and manual polarity observations,
respectively. The third and fourth columns are the full moment tensor PDFs for the automated polarity probabilities and manual polarity observations,
respectively. The fault plane plots show the most likely solutions with the darkest lines. The stations are indicated by circles for the automated polarity
probabilities, as no manual polarity information is used, and upwards red triangles or downwards blue triangles depending on the manually observed polarity.
The lune plots are normalized and marginalized to show the most likely source type; red regions correspond to high probability and blue to low probability.
Fig. 18 shows the positions of the different source types on the lune plot.

 at U
niversity of C

am
bridge on M

ay 20, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Automatic Bayesian polarity determination 289

Figure 20. Comparison of automated polarity and arbitrary probability of a mistaken pick
(

pmispick = 0.1
)

for two events, one synthetic (a) and the event
from Table 1 and Fig. 12(b). The first and second columns are the double-couple source PDFs for the automated polarity probabilities and manual polarity
observations with mispick, respectively. The third and fourth columns are the full moment tensor PDFs for the automated polarity probabilities and manual
polarity observations with mispick, respectively. The fault plane plots show the most likely solutions with the darkest lines. The stations are indicated by circles
if there is no manual polarity information used, and upwards red triangles or downwards blue triangles depending on the manually observed polarity. The lune
plots are normalized and marginalized to show the most likely source type; red regions correspond to high probability and blue to low probability. Fig. 18
shows the positions of the different source types on the lune plot.

Figure 21. Comparison of automated polarity using a Gaussian time PDF around the manual time pick and STA/LTA time picking for two events, one synthetic
(a) and the event from Table 1 and Fig. 12(b). The first and second columns are the double-couple source PDFs for the Gaussian time PDF and the STA/LTA
time PDF, respectively. The third and fourth columns are the full moment tensor PDFs for the Gaussian time PDF and the STA/LTA time PDF, respectively.
The fault plane plots show the most likely solutions with the darkest lines. The stations are indicated by circles for the automated polarity probabilities, as no
manual polarity information is used, and upwards red triangles or downwards blue triangles depending on the manually observed polarity. The lune plots are
normalized and marginalized to show the most likely source type; red regions correspond to high probability and blue to low probability. Fig. 18 shows the
positions of the different source types on the lune plot.
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Figure 22. Comparison of automated polarity using a manual prior of 0.85 and manual polarity source inversions for two events, one synthetic (a) and the
event from Table 1 and Fig. 12(b). The first and second columns are the double-couple source PDFs for the automated polarity probabilities with a manual
prior and manual polarity observations, respectively. The third and fourth columns are the full moment tensor PDFs for the automated polarity probabilities
with a manual prior and manual polarity observations, respectively. The fault plane plots show the most likely solutions with the darkest lines. The stations are
indicated by circles for the automated polarity probabilities, as no manual polarity information is used, and upwards red triangles or downwards blue triangles
depending on the manually observed polarity. The lune plots are normalized and marginalized to show the most likely source type; red regions correspond to
high probability and blue to low probability. Fig. 18 shows the positions of the different source types on the lune plot.

uncertainty of the polarities that carries through to the calculation
of the resulting source mechanism PDF. In the cases where the au-
tomated and manual picks seem to disagree, this can be attributed
partially to human error in the arrival time and manual polarity
determinations.

The time required for calculating the PDFs is fast compared
with that required for manual picking. This approach adds little
time to an automated processing workflow, and can be included
easily into near-real-time event detection, unlike the much slower
manual polarity picking. Additionally, the approach is useful for
determining polarities of phases measured on location-dependent
seismogram components, such as the SH phase. These are often
ignored in source inversion due to the requirement to return and
pick the polarities after the event has been located.
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