4,648 research outputs found

    A Noninvasive Method For In situ Determination of Mating Success in Female American Lobsters (Homarus americanus)

    Get PDF
    Despite being one of the most productive fisheries in the Northwest Atlantic, much remains unknown about the natural reproductive dynamics of American lobsters. Recent work in exploited crustacean populations (crabs and lobsters) suggests that there are circumstances where mature females are unable to achieve their full reproductive potential due to sperm limitation. To examine this possibility in different regions of the American lobster fishery, a reliable and noninvasive method was developed for sampling large numbers of female lobsters at sea. This method involves inserting a blunt-tipped needle into the female\u27s seminal receptacle to determine the presence or absence of a sperm plug and to withdraw a sample that can be examined for the presence of sperm. A series of control studies were conducted at the dock and in the laboratory to test the reliability of this technique. These efforts entailed sampling 294 female lobsters to confirm that the presence of a sperm plug was a reliable indicator of sperm within the receptacle and thus, mating. This paper details the methodology and the results obtained from a subset of the total females sampled. Of the 230 female lobsters sampled from George\u27s Bank and Cape Ann, MA (size range = 71-145 mm in carapace length), 90.3% were positive for sperm. Potential explanations for the absence of sperm in some females include: immaturity (lack of physiological maturity), breakdown of the sperm plug after being used to fertilize a clutch of eggs, and lack of mating activity. The surveys indicate that this technique for examining the mating success of female lobsters is a reliable proxy that can be used in the field to document reproductive activity in natural populations

    Oscillations in stellar superflares

    Get PDF
    Two different mechanisms may act to induce quasi-periodic pulsations (QPP) in whole-disk observations of stellar flares. One mechanism may be magneto-hydromagnetic (MHD) forces and other processes acting on flare loops as seen in the Sun. The other mechanism may be forced local acoustic oscillations due to the high-energy particle impulse generated by the flare (known as `sunquakes' in the Sun). We analyze short-cadence Kepler data of 257 flares in 75 stars to search for QPP in the flare decay branch or post-flare oscillations which may be attributed to either of these two mechanisms. About 18 percent of stellar flares show a distinct bump in the flare decay branch of unknown origin. The bump does not seem to be a highly-damped global oscillation because the periods of the bumps derived from wavelet analysis do not correlate with any stellar parameter. We detected damped oscillations covering several cycles (QPP), in seven flares on five stars. The periods of these oscillations also do not correlate with any stellar parameter, suggesting that these may be a due to flare loop oscillations. We searched for forced global oscillations which might result after a strong flare. To this end, we investigated the behaviour of the amplitudes of solar-like oscillations in eight stars before and after a flare. However, no clear amplitude change could be detected. We also analyzed the amplitudes of the self-excited pulsations in two delta Scuti stars and one gamma Doradus star before and after a flare. Again, no clear amplitude changes were found. Our conclusions are that a new process needs to be found to explain the high incidence of bumps in stellar flare light curves, that flare loop oscillations may have been detected in a few stars and that no conclusive evidence exists as yet for flare induced global acoustic oscillations (starquakes).Comment: 13 pages, 14 figures, 3 table

    A noninvasive method for in situ determination of mating success in female American lobsters (Homarus americanus)

    Full text link
    Despite being one of the most productive fisheries in the Northwest Atlantic, much remains unknown about the natural reproductive dynamics of American lobsters. Recent work in exploited crustacean populations (crabs and lobsters) suggests that there are circumstances where mature females are unable to achieve their full reproductive potential due to sperm limitation. To examine this possibility in different regions of the American lobster fishery, a reliable and noninvasive method was developed for sampling large numbers of female lobsters at sea. This method involves inserting a blunt-tipped needle into the female's seminal receptacle to determine the presence or absence of a sperm plug and to withdraw a sample that can be examined for the presence of sperm. A series of control studies were conducted at the dock and in the laboratory to test the reliability of this technique. These efforts entailed sampling 294 female lobsters to confirm that the presence of a sperm plug was a reliable indicator of sperm within the receptacle and thus, mating. This paper details the methodology and the results obtained from a subset of the total females sampled. Of the 230 female lobsters sampled from George's Bank and Cape Ann, MA (size range = 71-145 mm in carapace length), 90.3% were positive for sperm. Potential explanations for the absence of sperm in some females include: immaturity (lack of physiological maturity), breakdown of the sperm plug after being used to fertilize a clutch of eggs, and lack of mating activity. The surveys indicate that this technique for examining the mating success of female lobsters is a reliable proxy that can be used in the field to document reproductive activity in natural populations

    A Noninvasive Method For In situ Determination of Mating Success in Female American Lobsters (Homarus americanus)

    Get PDF
    Despite being one of the most productive fisheries in the Northwest Atlantic, much remains unknown about the natural reproductive dynamics of American lobsters. Recent work in exploited crustacean populations (crabs and lobsters) suggests that there are circumstances where mature females are unable to achieve their full reproductive potential due to sperm limitation. To examine this possibility in different regions of the American lobster fishery, a reliable and noninvasive method was developed for sampling large numbers of female lobsters at sea. This method involves inserting a blunt-tipped needle into the female\u27s seminal receptacle to determine the presence or absence of a sperm plug and to withdraw a sample that can be examined for the presence of sperm. A series of control studies were conducted at the dock and in the laboratory to test the reliability of this technique. These efforts entailed sampling 294 female lobsters to confirm that the presence of a sperm plug was a reliable indicator of sperm within the receptacle and thus, mating. This paper details the methodology and the results obtained from a subset of the total females sampled. Of the 230 female lobsters sampled from George\u27s Bank and Cape Ann, MA (size range = 71-145 mm in carapace length), 90.3% were positive for sperm. Potential explanations for the absence of sperm in some females include: immaturity (lack of physiological maturity), breakdown of the sperm plug after being used to fertilize a clutch of eggs, and lack of mating activity. The surveys indicate that this technique for examining the mating success of female lobsters is a reliable proxy that can be used in the field to document reproductive activity in natural populations

    Electronic band structure, Fermi surface, and elastic properties of new 4.2K superconductor SrPtAs from first-principles calculations

    Full text link
    The hexagonal phase SrPtAs (s.g. P6/mmm; #194) with a honeycomb lattice structure very recently was declared as a new low-temperature (TC ~ 4.2K) superconductor. Here by means of first-principles calculations the optimized structural parameters, electronic bands, Fermi surface, total and partial densities of states, inter-atomic bonding picture, independent elastic constants, bulk and shear moduli for SrPtAs were obtained for the first time and analyzed in comparison with the related layered superconductor SrPt2As2.Comment: 8 pages, 4 figure

    RGS9-1 is required for normal inactivation of mouse cone phototransduction

    Get PDF
    Purpose: To test the hypothesis that Regulator of G-protein Signaling 9 (RGS9-1) is necessary for the normal inactivation of retinal cones. Methods: Mice having the gene RGS9-1 inactivated in both alleles (RGS9-1 -/-) were tested between the ages 8-10 weeks with electroretinographic (ERG) protocols that isolate cone-driven responses. Immunohistochemistry was performed with a primary antibody against RGS9-1 (anti-RGS9-1c), with the secondary conjugated to fluorescein isothiocyanate, and with rhodamine-conjugated peanut agglutinin. Results: (1) Immunohistochemistry showed RGS9-1 to be strongly expressed in the cones of wildtype (WT is C57BL/6) mice, but absent from the cones of RGS9-1 mice. (2) Cone-driven b-wave responses of dark-adapted RGS9-1 -/- mice had saturating amplitudes and sensitivities in the midwave and UV regions of the spectrum equal to or slightly greater than those of WT (C57BL/6) mice. (3) Cone-driven b-wave and a-wave responses of RGS9-1 -/- mice recovered much more slowly than those of WT after a strong conditioning flash: for a flash estimated to isomerize 1.2% of the M-cone pigment and 0.9% of the UV-cone pigment, recovery of 50% saturating amplitude was approximately 60-fold slower than in WT. Conclusions: (1) The amplitudes and sensitivities of the cone-driven responses indicate that cones and cone-driven neurons in RGS9-1 -/- mice have normal generator currents. (2) The greatly retarded recovery of cone-driven responses of RGS9-1 -/- mice relative to those of WT mice establishes that RGS9-1 is required for normal inactivation of the cone phototransduction cascades of both UV- and M-cones

    Breaking quantum linearity: constraints from human perception and cosmological implications

    Full text link
    Resolving the tension between quantum superpositions and the uniqueness of the classical world is a major open problem. One possibility, which is extensively explored both theoretically and experimentally, is that quantum linearity breaks above a given scale. Theoretically, this possibility is predicted by collapse models. They provide quantitative information on where violations of the superposition principle become manifest. Here we show that the lower bound on the collapse parameter lambda, coming from the analysis of the human visual process, is ~ 7 +/- 2 orders of magnitude stronger than the original bound, in agreement with more recent analysis. This implies that the collapse becomes effective with systems containing ~ 10^4 - 10^5 nucleons, and thus falls within the range of testability with present-day technology. We also compare the spectrum of the collapsing field with those of known cosmological fields, showing that a typical cosmological random field can yield an efficient wave function collapse.Comment: 13 pages, LaTeX, 3 figure

    Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators

    Get PDF
    Land management for carbon storage is discussed as being indispensable for climate change mitigation because of its large potential to remove carbon dioxide from the atmosphere, and to avoid further emissions from deforestation. However, the acceptance and feasibility of land-based mitigation projects depends on potential side effects on other important ecosystem functions and their services. Here, we use projections of future land use and land cover for different land-based mitigation options from two land-use models (IMAGE and MAgPIE) and evaluate their effects with a global dynamic vegetation model (LPJ-GUESS). In the land-use models, carbon removal was achieved either via growth of bioenergy crops combined with carbon capture and storage, via avoided deforestation and afforestation, or via a combination of both. We compare these scenarios to a reference scenario without land-based mitigation and analyse the LPJ-GUESS simulations with the aim of assessing synergies and trade-offs across a range of ecosystem service indicators: carbon storage, surface albedo, evapotranspiration, water runoff, crop production, nitrogen loss, and emissions of biogenic volatile organic compounds. In our mitigation simulations cumulative carbon storage by year 2099 ranged between 55 and 89 GtC. Other ecosystem service indicators were influenced heterogeneously both positively and negatively, with large variability across regions and land-use scenarios. Avoided deforestation and afforestation led to an increase in evapotranspiration and enhanced emissions of biogenic volatile organic compounds, and to a decrease in albedo, runoff, and nitrogen loss. Crop production could also decrease in the afforestation scenarios as a result of reduced crop area, especially for MAgPIE land-use patterns, if assumed increases in crop yields cannot be realized. Bioenergy-based climate change mitigation was projected to affect less area globally than in the forest expansion scenarios, and resulted in less pronounced changes in most ecosystem service indicators than forest-based mitigation, but included a possible decrease in nitrogen loss, crop production, and biogenic volatile organic compounds emissions
    • …
    corecore