1,564 research outputs found

    Comparison of in situ aerosol measurements with SAGE 2 and SAM 2 aerosol measurements during the airborne Antarctic ozone experiment

    Get PDF
    Models indicate that stratospheric aerosols play a major role in the destruction of ozone during the Austral winter. Although many in situ measurements of stratospheric aerosols were made during the Airborne Antarctic Ozone Experiment, changes of aerosol concentration and size distributions across the polar vortex are important to understanding changes of chemical species taking place during this time. Therefore comparing the in situ measurements with measurements made by satellites scanning wider areas will give a clearer picture of the possible role played by aerosols during this period. The wire impactor size distributions are compared to those from the aerosol spectrometers and a best fit size distribution determined. Aerosol extinctions are calculated from the in situ measurements and compared to the extinctions measured by the satellites. Five comparisons are made with SAGE 2 and four with SAM 2. Extinctions agree as close as a factor of two

    Ice in the Antarctic polar stratosphere

    Get PDF
    On six occasions during the 1987 Airborne Antarctic Ozone Experiment, the Polar Stratospheric Cloud (PSC) ice crystals were replicated over the Palmer Peninsula at approximately 70 deg South. The sampling altitude was approximately 60 to 65 thousand feet, the temperature range was -83.5 to -72C and the atmosphere was subsaturated in all cases. The collected crystals were predominantly complete and hollow prismatic columns with maximum dimensions up to 217 microns. Evidence of scavenging of submicron particles was detected on several crystals. While the replicated crystal sizes were larger than anticipated, their relatively low concentration results in a total surface area less than one tenth that of the sampled aerosol particles. The presence of large crystals suggest that PSC ice crystals can play a very important role in stratospheric dehydration processes

    Antarctic polar stratospheric aerosols: The roles of nitrates, chlorides and sulfates

    Get PDF
    Nitric and hydrochloric acids have been postulated to condense in the winter polar stratosphere to become an important component of polar stratospheric clouds. One implication is that the removal of NO(y) from the gas phase by this mechanism allows high Cl(x) concentrations to react with O3, because the formation of ClNO3 is inhibited. Contributions of NO3 and Cl to the stratospheric aerosol were determined during the 1987 Airborne Antarctic Ozone Experiment by testing for the presence of nitrates and chlorides in the condensed phase. Aerosol particles were collected on four 500 micron diameter gold wires, each pretreated differently to give results that were specific to certain physical and chemical aerosol properties. One wire was carbon-coated for concentration and size analyses by scanning electron microscopy; X-ray energy dispersive analyses permitted the detection of S and Cl in individual particles. Three more wires were coated with Nitron, barium chloride and silver nitrate, respectively, to detect nitrate, sulfate and chloride in aerosol particles. All three ions, viz., sulfates, nitrates and chlorides were detected in the Antarctic stratospheric aerosol. In terms of number concentrations, the aerosol was dominated by sulfates, followed by chlorides and nitrates. An inverse linear regression can be established between nitrate concentrations and ozone mixing ratio, and between temperature and nitrates

    Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    Get PDF
    The observation of distinct peaks in tokamak core reflectometry measurements - named quasi-coherent-modes (QCMs) - are identified as a signature of Trapped-Electron-Mode (TEM) turbulence [H. Arnichand et al. 2016 Plasma Phys. Control. Fusion 58 014037]. This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the \gene code. A Tore-Supra density scan is studied, which traverses through a Linear (LOC) to Saturated (SOC) Ohmic Confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ITG modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulenc

    Pair Plasma Instability in Homogeneous Magnetic Guide Fields

    Get PDF
    Pair plasmas, collections of both matter and antimatter particles of equal mass, represent a paradigm for the study of basic plasma science, and many open questions exist regarding these unique systems. They are found in many astrophysical settings, such as gamma-ray bursts, and have recently also been produced in carefully designed laboratory experiments. A central research topic in plasma physics is instability; however, unlike their more common ion–electron siblings, pair plasmas are generally thought to be stable to cross field pressure gradients in homogeneous magnetic fields. It is shown here by means of kinetic full-f simulations that, when a pressure gradient is first established, the Gradient-driven Drift Coupling mode is destabilized and becomes turbulent. Force balance is eventually achieved by a combination of flattened pressure profiles due to turbulent transport and establishment of a magnetic field gradient, saturating the growth. During the unstable phase, key physics can be captured by a δf gyrokinetic description, where it is shown analytically and numerically that parallel particle motion results in a coupling of all electromagnetic field components. A fluid model derived therefrom accurately predicts linear eigenmodes and is used to resolve global profile effects. For laser-based electron–positron plasma experiments, prompt instability is predicted with growth times much shorter than plasma lifetimes. Similarly, growth rates are calculated for the planned APEX experiment as well as gamma-ray burst scenarios, suggesting that the instability may contribute to the early evolution of these systems.</p

    Extinction and backscatter measurements of Antarctic PSC's, 1987: Implications for particle and vapor removal

    Get PDF
    The temperature dependence is examined of optical properties measured in the Antarctic during 1987 at the 70 mb level (near 18 km), a level chosen to correlate the results with in situ measurements made from the NASA-Ames ER-2 aircraft during the 1987 Airborne Antarctic Ozone Experiment (AAOE). The data set consists of extinction measurements by Sam 2 inside the Antarctic polar vortex from May to October 1987; and backscatter measurements by the UV-DIAL (Ultraviolet Differential Absorption Lidar) system aboard the Ames DC-8 aircraft during selected AAOE flights. Observed trends are compared with results from a revised version of Pole and McCormick's model to classify the PSC observations by Type (1 or 2) and infer the temporal behavior of the ambient aerosol and ambient vapor mixing ratios. The sample figures show monthly ensembles of the 70-mb Sam 2 extinction ratio (the ratio of aerosol or PSC extinction to molecule extinction) as a function of NMC temperature at the beginning (June) and (October) of the 1987 Antarctic winter. Both ensembles show two rather distinct clusters of points: one oriented in the near vertical direction which depicts the change with temperature of the ambient aerosol extinction ratio; and a second cluster oriented in the near horizontal direction whose position on the vertical scale marks a change in particle phase (i.e., PSC formation) and whose length (the extinction enhancement related to that of the ambient aerosol) is an indicator of PSC type

    Multi-Scale Interactions of Microtearing Turbulence in the Tokamak Pedestal

    Get PDF
    Microtearing turbulence in an idealized pedestal scenario is found to saturate via zonal fields, while also exciting strong zonal flows; a concurrent upshift of the non-linear critical gradient is observed. The zonal flows cause electron-temperature-gradient-driven turbulence to be ameliorated. When applying resonant magnetic perturbations, the prompt charge loss off the flux surface erodes the zonal flow, leading to higher electron-scale fluxes, while leaving microtearing saturation physics unaffected.</p

    Signs Workshop: the importance of natural gestures in the promotion of early communication skills of children with developmental disabilities

    Get PDF
    This article emphasises the importance of natural gestures and describes the framework and the development process of the “Signs Workshop” CD-ROM, which is a multimedia application for the promotion of early communication skills of children with developmental disabilities. Signs Workshop CD-ROM was created in the scope of Down’s Comm Project, which was financed by the Calouste Gulbenkian Foundation, and is the result of a partnership between UNICA (Communication and Arts Research Unit of the University of Aveiro) and the Portuguese Down Syndrome Association (APPT21/Differences)
    corecore