960 research outputs found

    Abstract verification and debugging of constraint logic programs

    Get PDF
    The technique of Abstract Interpretation [13] has allowed the development of sophisticated program analyses which are provably correct and practical. The semantic approximations produced by such analyses have been traditionally applied to optimization during program compilation. However, recently, novel and promising applications of semantic approximations have been proposed in the more general context of program verification and debugging [3],[10],[7]

    The HIHI- and H2H_{2}-to-stellar mass correlations of late- and early-type galaxies and their consistency with the observational mass functions

    Get PDF
    We compile and carrefully homogenize local galaxy samples with available information on stellar, HI\rm HI and/or H2\rm H_{2} masses, and morphology. After processing the information on upper limits in the case of non gas detections, we determine the HI\rm HI- and H2\rm H_{2}-to-stellar mass relations and their 1σ1\sigma scatter for both late- and early-type galaxies. The obtained relations are fitted to single or double power laws. Late-type galaxies are significantly gas richer than early-type ones, specially at high masses. The respective H2\rm H_{2}-to-HI\rm HI mass ratios as a function of M∗M_{\ast} are discussed. Further, we constrain the full mass-dependent distribution functions of the HI\rm HI- and H2\rm H_{2}-to-stellar mass ratios. We find that they can be described by a Schechter function for late types and a (broken) Schechter + uniform function for early types. By using the observed galaxy stellar mass function and the volume-complete late-to-early-type galaxy ratio as a function of M∗M_{\ast}, these empirical distribution functions are mapped into HI\rm HI and H2\rm H_{2} mass functions. The obtained mass functions are consistent with those inferred from large surveys. The empirical gas-to-stellar mass relations and their distributions for local late- and early-type galaxies presented here can be used to constrain models and simulations of galaxy evolution.Comment: 43 pages, 18 figures, to appear in RMxAA. Minor corrections introduced. The presented results are optimal for comparisons with theoretical predictions. Py-code to generate the HI- and H2-to-stellar mass relations and their 1sigma scatter, as well as the full mass-dependent distribution functions of the MHI/Ms and MH2/Ms ratios are available upon request to A.R. Calett

    The bivariate gas-stellar mass distributions and the mass functions of early- and late-type galaxies at z∼0z\sim0

    Full text link
    We report the bivariate HI- and H2_2-stellar mass distributions of local galaxies in addition of an inventory of galaxy mass functions, MFs, for HI, H2_2, cold gas, and baryonic mass, separately into early- and late-type galaxies. The MFs are determined using the HI and H2_2 conditional distributions and the galaxy stellar mass function, GSMF. For the conditional distributions we use the compilation presented in Calette et al. 2018. For determining the GSMF from M∗∼3×107M_{\ast}\sim3\times10^{7} to 3×10123\times10^{12} M⊙M_{\odot}, we combine two spectroscopic samples from the SDSS at the redshift range 0.0033<z<0.20.0033<z<0.2. We find that the low-mass end slope of the GSMF, after correcting from surface brightness incompleteness, is α≈−1.4\alpha\approx-1.4, consistent with previous determinations. The obtained HI MFs agree with radio blind surveys. Similarly, the H2_2 MFs are consistent with CO follow-up optically-selected samples. We estimate the impact of systematics due to mass-to-light ratios and find that our MFs are robust against systematic errors. We deconvolve our MFs from random errors to obtain the intrinsic MFs. Using the MFs, we calculate cosmic density parameters of all the baryonic components. Baryons locked inside galaxies represent 5.4% of the universal baryon content, while ∼96\sim96% of the HI and H2_2 mass inside galaxies reside in late-type morphologies. Our results imply cosmic depletion times of H2_2 and total neutral H in late-type galaxies of ∼1.3\sim 1.3 and 7.2 Gyr, respectively, which shows that late type galaxies are on average inefficient in converting H2_2 into stars and in transforming HI gas into H2_2. Our results provide a fully self-consistent empirical description of galaxy demographics in terms of the bivariate gas--stellar mass distribution and their projections, the MFs. This description is ideal to compare and/or to constrain galaxy formation models.Comment: 37 pages, 17 figures. Accepted for publication in PASA. A code that displays tables and figures with all the relevant statistical distributions and correlations discussed in this paper is available here https://github.com/arcalette/Python-code-to-generate-Rodriguez-Puebla-2020-result

    Relationship between downwelling surface shortwave radiative fluxes and sea surface temperature over the tropical Pacific: AMIP II models versus satellite estimates

    Get PDF
    Incident shortwave radiation at the Earth&apos;s surface is the driving force of the climate system. Understanding the relationship between this forcing and the sea surface temperature, in particular, over the tropical Pacific Ocean is a topic of great interest because of possible climatic implications. The objective of this study is to investigate the relationship between downwelling shortwave radiative fluxes and sea surface temperature by using available data on radiative fluxes. We assess first the shortwave radiation from three General Circulation Models that participated in the second phase of the Atmospheric Model Intercomparison Project (AMIP II) against estimates of such fluxes from satellites. The shortwave radiation estimated from the satellite is based on observations from the International Satellite Cloud Climatology Project D1 data and the University of Maryland Shortwave Radiation Budget model (UMD/SRB). Model and satellite estimates of surface radiative fluxes are found to be in best agreement in the central equatorial Pacific, according to mean climatology and spatial correlations. We apply a Canonical Correlation Analysis to determine the interrelated areas where shortwave fluxes and sea surface temperature are most sensitive to climate forcing. Model simulations and satellite estimates of shortwave fluxes both capture well the interannual signal of El Niño-like variability. The tendency for an increase in shortwave radiation from the UMD/SRB model is not captured by the AMIP II models

    Exploiting Term Hiding to Reduce Run-time Checking Overhead

    Full text link
    One of the most attractive features of untyped languages is the flexibility in term creation and manipulation. However, with such power comes the responsibility of ensuring the correctness of these operations. A solution is adding run-time checks to the program via assertions, but this can introduce overheads that are in many cases impractical. While static analysis can greatly reduce such overheads, the gains depend strongly on the quality of the information inferred. Reusable libraries, i.e., library modules that are pre-compiled independently of the client, pose special challenges in this context. We propose a technique which takes advantage of module systems which can hide a selected set of functor symbols to significantly enrich the shape information that can be inferred for reusable libraries, as well as an improved run-time checking approach that leverages the proposed mechanisms to achieve large reductions in overhead, closer to those of static languages, even in the reusable-library context. While the approach is general and system-independent, we present it for concreteness in the context of the Ciao assertion language and combined static/dynamic checking framework. Our method maintains the full expressiveness of the assertion language in this context. In contrast to other approaches it does not introduce the need to switch the language to a (static) type system, which is known to change the semantics in languages like Prolog. We also study the approach experimentally and evaluate the overhead reduction achieved in the run-time checks.Comment: 26 pages, 10 figures, 2 tables; an extension of the paper version accepted to PADL'18 (includes proofs, extra figures and examples omitted due to space reasons
    • …
    corecore