780 research outputs found

    Phonon anomalies and charge dynamics in Fe_{1-x}Cu_{x}Cr_{2}S_{4} single crystals

    Get PDF
    A detailed investigation of phonon excitations and charge carrier dynamics in single crystals of Fe_{1-x}Cu_{x}Cr_{2}S_{4} (x = 0, 0.2, 0.4, 0.5) has been performed by using infrared spectroscopy. In FeCr_{2}S_{4} the phonon eigenmodes are strongly affected by the onset of magnetic order. Despite enhanced screening effects, a continuous evolution of the phonon excitations can be observed in the doped compounds with x = 0.2 (metallic) and x = 0.4, 0.5 (bad metals), but the effect of magnetic ordering on the phonons is strongly reduced compared to x = 0. The Drude-like charge-carrier contribution to the optical conductivity in the doped samples indicates that the colossal magneto-resistance effect results from the suppression of spin-disorder scattering.Comment: 8 pages, 6 figure

    Electronic structure and physical properties of the spinel-type phase of BeP2N4 from all-electron density functional calculations

    Get PDF
    Using density-functional-theory-based ab initio methods, the electronic structure and physical properties of the newly synthesized nitride BeP2N4 with a phenakite-type structure and the predicted high-pressure spinel phase of BeP2N4 are studied in detail. It is shown that both polymorphs are wide band-gap semiconductors with relatively small electron effective masses at the conduction-band minima. The spinel-type phase is more covalently bonded due to the increased number of P-N bonds for P at the octahedral sites. Calculations of mechanical properties indicate that the spinel-type polymorph is a promising superhard material with notably large bulk, shear, and Young’s moduli. Also calculated are the Be K, P K, P L3, and N K edges of the electron energy-loss near-edge structure for both phases. They show marked differences because of the different local environments of the atoms in the two crystalline polymorphs. These differences will be very useful for the experimental identification of the products of high-pressure syntheses targeting the predicted spinel-type phase of BeP2N4

    Transport, magnetic, thermodynamic and optical properties in Ti-doped Sr_2RuO_4

    Get PDF
    We report on electrical resistivity, magnetic susceptibility and magnetization, on heat capacity and optical experiments in single crystals of Sr_2Ru_(1-x)Ti_xO_4. Samples with x=0.1 and 0.2 reveal purely semiconducting resistivity behavior along c and the charge transport is close to localization within the ab-plane. A strong anisotropy in the magnetic susceptibility appears at temperatures below 100 K. Moreover magnetic ordering in c-direction with a moment of order 0.01 mu_B/f.u. occurs at low temperatures. On doping the low-temperature linear term of the heat capacity becomes reduced significantly and probably is dominated by spin fluctuations. Finally, the optical conductivity reveals the anisotropic character of the dc resistance, with the in-plane conductance roughly following a Drude-type behavior and an insulating response along c

    Electronic and optical properties of LiBC

    Full text link
    LiBC, a semiconducting ternary borocarbide constituted of the lightest elements only, has been synthesized and characterized by x-ray powder diffraction, dielectric spectroscopy, and conductivity measurements. Utilizing an infrared microscope the phonon spectrum has been investigated in single crystals. The in-plane B-C stretching mode has been detected at 150 meV, noticeably higher than in AlB2, a non-superconducting isostructural analog of MgB2. It is this stretching mode, which reveals a strong electron-phonon coupling in MgB2, driving it into a superconducting state below 40 K, and is believed to mediate predicted high-temperature superconductivity in hole-doped LiBC [H. Rosner, A. Kitaigorodsky, and W. E. Pickett, Phys. Rev. Lett. 88, 127001 (2002)].Comment: 4 pages, 4 figure

    High-Resolution Spectroscopy of Bonding in a Novel BeP2N4 Compound

    Get PDF
    The recently discovered compound BeP2N4 that crystallizes in the phenakite-type structure has potential application as a high strength optoelectronic material. Therefore, it is important to analyze experimentally the electronic structure, which was done in the present work by monochromated electron energy-loss spectroscopy. The detection of Be is challenging due to its low atomic number and easy removal under electron bombardment. We were able to determine the bonding behavior and coordination of the individual atomic species including Be. This is evident from a good agreement between experimental electron energy-loss near-edge structures of the Be-K-, P-L2,3-, and N-K-edges and density functional theory calculations

    Robust paramagnetism in Bi2-xMxRu2O7 (M=Mn,Fe,Co,Ni,Cu) pyrochlore

    Full text link
    We report physical property characterization of Bi2-xMxRu2O7 pyrochlores, including magnetic suseptibility, resistivity, and Seebeck coefficients. The solid solution exists up to x=0.5 for (M=Cu,Ni,Co) and up to x=0.1 for (M=Fe,Mn). None of the doped materials exhibit ferromagnetism or any localized ruthenium moment behavior. Instead we find the Ru-O and Bi-O sublattices to be essentially independent, with any magnetism resulting from the unpaired transition metal dopant spins. Cobalt substitution for bismuth results in localized Co{2+}, and low temperature spin-glass transitions in several cases. Nickel moments on the pyrochlore lattice display properties intermediate to localized and itinerant. Finally, copper doping results in only an enhancement of the Pauli metallic density of states.Comment: submitted, Phys. Rev.

    The Evolution of Transport Across World Regions

    Get PDF
    This chapter aims at providing an overview of the multiple aspects involved in passenger and freight transport, which are the base for the understanding of the energy consumption of the sector, as well as for the current trends and prospects related to digitalization and decarbonization. A brief historical discussion and some trends will be presented, followed by a description of the main modes and technologies, both for passenger and freight transport, and a final focus on the differences across world regions in mobility patterns and behaviors. The evolution of transport systems has led to very different situations worldwide, depending on different strategies related to economic development, geographical limitations and cultural, political and social aspects. Proper sustainable mobility plans need to be based on the specific characteristics of each location, and the integration between different governance levels is of utmost importance to improve the reliability, affordability, and energy performance on the entire transport system
    • …
    corecore