4 research outputs found

    A Framework for the Game-theoretic Analysis of Censorship Resistance

    Get PDF
    This paper argues that one of the most important decisions in designing and deploying censorship resistance systems is whether one set of system options should be selected (the best), or whether there should be several sets of good ones. We model the problem of choosing these options as a cat-and-mouse game and show that the best strategy depends on the value the censor associates with total system censorship versus partial, and the tolerance of false positives. If the censor has a low tolerance to false positives then choosing one censorship resistance system is best. Otherwise choosing several systems is the better choice, but the way traffic should be distributed over the systems depends on the tolerance of the censor to false negatives. We demonstrate that establishing the censor's utility function is critical to discovering the best strategy for censorship resistance

    SoK: Making Sense of Censorship Resistance Systems

    Get PDF
    An increasing number of countries implement Internet censorship at different scales and for a variety of reasons. Several censorship resistance systems (CRSs) have emerged to help bypass such blocks. The diversity of the censor’s attack landscape has led to an arms race, leading to a dramatic speed of evolution of CRSs. The inherent complexity of CRSs and the breadth of work in this area makes it hard to contextualize the censor’s capabilities and censorship resistance strategies. To address these challenges, we conducted a comprehensive survey of CRSs-deployed tools as well as those discussed in academic literature-to systematize censorship resistance systems by their threat model and corresponding defenses. To this end, we first sketch a comprehensive attack model to set out the censor’s capabilities, coupled with discussion on the scope of censorship, and the dynamics that influence the censor’s decision. Next, we present an evaluation framework to systematize censorship resistance systems by their security, privacy, performance and deployability properties, and show how these systems map to the attack model. We do this for each of the functional phases that we identify for censorship resistance systems: communication establishment, which involves distribution and retrieval of information necessary for a client to join the censorship resistance system; and conversation, where actual exchange of information takes place. Our evaluation leads us to identify gaps in the literature, question the assumptions at play, and explore possible mitigations
    corecore