25 research outputs found

    Imaging of Zebrafish In Vivo with Second-Harmonic Generation Reveals Shortened Sarcomeres Associated with Myopathy Induced by Statin

    Get PDF
    We employed second-harmonic generation (SHG) imaging and the zebrafish model to investigate the myopathy caused by statin in vivo with emphasis on the altered microstructures of the muscle sarcomere, the fundamental contractile element of muscles. This approach derives an advantage of SHG imaging to observe the striated skeletal muscle of living zebrafish based on signals produced mainly from the thick myosin filament of sarcomeres without employing exogenous labels, and eliminates concern about the distortion of muscle structures caused by sample preparation in conventional histological examination. The treatment with statin caused a significantly shortened sarcomere relative to an untreated control (1.73±0.09 µm vs 1.91±0.08 µm, P<0.05) while the morphological integrity of the muscle fibers remained largely intact. Mechanistic tests indicated that this microstructural disorder was associated with the biosynthetic pathway of cholesterol, or, specifically, with the impaired production of mevalonate by statins. This microstructural disorder exhibited a strong dependence on both the dosage and the duration of treatment, indicating a possibility to assess the severity of muscle injury according to the altered length of the sarcomeres. In contrast to a conventional assessment of muscle injury using clinical biomarkers in blood, such as creatine kinase that is released from only disrupted myocytes, the ability to determine microstructural modification of sarcomeres allows diagnosis of muscle injury before an onset of conventional clinical symptoms. In light of the increasing prevalence of the incidence of muscle injuries caused by new therapies, our work consolidates the combined use of the zebrafish and SHG imaging as an effective and sensitive means to evaluate the safety profile of new therapeutic targets in vivo

    Mapping Molecular Orientation with Phase Sensitive Vibrationally Resonant Sum-Frequency Generation Microscopy

    Full text link
    We demonstrate a phase sensitive, vibrationally resonant sum-frequency generation (PSVR-SFG) microscope that combines high resolution, fast image acquisition speed, chemical selectivity, and phase sensitivity. Using the PSVR-SFG microscope, we generate amplitude and phase images of the second-order susceptibility of collagen I fibers in rat tail tendon tissue on resonance with the methylene vibrations of the protein. We find that the phase of the second-order susceptibility shows dependence on the effective polarity of the fibril bundles, revealing fibrous collagen domains of opposite orientations within the tissue. The presence of collagen microdomains in tendon tissue may have implications for the interpretation of the mechanical properties of the tissue. [Image: see text

    Nonlinear imaging microscopy for assessing structural and photochemical modifications upon laser removal of dammar varnish on photosensitive substrates

    Get PDF
    The nonlinear optical microscopy (NLM) modalities of Multi-Photon Excited Fluorescence (MPEF) and Third Harmonic Generation (THG) have been combined in this work to characterize as a function of depth with micrometric resolution the type and extent of morphological and photochemical modifications that take place upon ultraviolet (UV) pulsed laser removal of a dammar varnish layer applied on a photosensitive substrate. The latter consists on a layer of the synthetic polymer polymethyl methacrylate doped with a photosensitizer, the aromatic compound 1,4-di[2-(5-phenyloxazolyl)] benzene, that strongly fluoresces upon UV light illumination. A number of laser conditions for partial or total elimination of the varnish coating were explored, namely different wavelengths (266, 248 and 213 nm) and pulse durations, in the nanosecond, picosecond and femtosecond ranges. Changes in the MPEF signals upon laser ablation of the outermost varnish layer successfully signpost photochemical modifications of the varnish or of the photosensitive under-layer, and their dependence with the laser ablation parameters, i.e., wavelength and pulse duration. In turn, THG signals mark the presence of layer boundaries and the reduction by laser ablation of the thickness of the varnish coating. The obtained MPEF and THG data are complemented by morphological observation by optical microscopy and measurements of laser induced fluorescence and micro-Raman spectra of the samples before and after laser ablation at the selected laser irradiation conditions. The results acquired through these nondestructive NLM imaging techniques serve to understand the phenomena that are induced upon laser ablation and to determine the best operating conditions that ensure controlled removal of the varnish with minimal morphological and chemical modifications to the under-layers. This research is of direct application to the UV pulsed laser cleaning of paintings and demonstrates the potential of NLM as a novel assessment tool for non-destructive, on line monitoring of the laser cleaning process.Peer reviewe

    Use of cotton textiles coated by ir(III) tetrazole complexes within ceramic silica nanophases for photo-induced self-marker and antibacterial application

    Get PDF
    This study was aimed at the production and characterization of coated cotton textiles with luminescent ceramic nanophases doped with cationic Ir(III) tetrazole complexes. We confirmed that SiO2 nanoparticles (NPs) do not affect the phosphorescent properties of the complexes that maintain their emission (610 and 490 nm). For the first time we transferred the luminescence feature from nanosol to textile surface, highlighting the advantages of using nanosilica as an encapsulating and stabilizing matrix. The optimized Ir@SiO2 suspensions were homogenously applied onto the cotton surface by dip-pad-dry-cure technique, as proved by the 2p-fluorescence microscope analysis. Once we verified the self-marker properties of the Ir(III) complex, we observed an excellent washing fastness of the coating with a very limited release. SiO2 in the washing water was quantified at maximum around 1.5 wt% and Ir below the inductively coupled plasma optical emission spectrometry (ICP-OES) detection limit of 1 ppm. A Franz cell test was used to evaluate any possible ex-vivo uptake of Ir@SiO2 nanoparticles across human skin tissues, showing that epidermis and dermis stop over 99% of Ir, implying a reduced impact on human health. The light-induced antimicrobial potential of the Ir@SiO2 were assessed toward both Gram(-) and Gram(+) bacteria. The results encouraged further developments of such functional textiles coated by self-markers and antibacterial active nanophases

    Nanoscale optical diagnostics of 2d TMDs

    No full text
    The presence of imperfections during 2D materials grown is undesirable for emerging applications for which large-scale production of high purity materials is essential. There is currently no easily applicable, non-invasive, and fast characterization method for determining, with high resolution and sensitivity, changes in crystallographic orientations as well as grain and other extended defect boundaries over a large 2D crystal area. Therefore, there is a need to develop quantitative metrics to quickly evaluate the quality of 2D crystals and provide direct feedback for process control during material growth

    Ultrahigh-resolution nonlinear optical imaging of the armchair orientation in 2D transition metal dichalcogenides

    No full text
    We used nonlinear laser scanning optical microscopy to study atomically thin transition metal dichalcogenides (TMDs) and revealed, with unprecedented resolution, the orientational distribution of armchair directions and their degree of organization in the two-dimensional (2D) crystal lattice. In particular, we carried out polarization-resolved second-harmonic generation (PSHG) imaging for monolayer WS 2 and obtained, with high-precision, the orientation of the main crystallographic axis (armchair orientation) for each individual 120 ×120 nm 2 pixel of the 2D crystal area. Such nanoscale resolution was realized by fitting the experimental PSHG images, obtained with sub-micron precision, to a new generalized theoretical model that accounts for the nonlinear optical properties of TMDs. This enabled us to distinguish between different crystallographic domains, locate boundaries and reveal fine structure. As a consequence, we can calculate the mean orientational average of armchair angle distributions in specific regions of interest and define the corresponding standard deviation as a figure-of-merit for the 2D crystal quality

    Twist Angle mapping in layered WS<inf>2</inf> by Polarization-Resolved Second Harmonic Generation

    No full text
    Stacked atomically thin transition metal dichalcogenides (TMDs) exhibit fundamentally new physical properties compared to those of the individual layers. The twist angle between the layers plays a crucial role in tuning these properties. Having a tool that provides high-resolution, large area mapping of the twist angle, would be of great importance in the characterization of such 2D structures. Here we use polarization-resolved second harmonic generation (P-SHG) imaging microscopy to rapidly map the twist angle in large areas of overlapping WS2 stacked layers. The robustness of our methodology lies in the combination of both intensity and polarization measurements of SHG in the overlapping region. This allows the accurate measurement and consequent pixel-by-pixel mapping of the twist angle in this area. For the specific case of 30° twist angle, P-SHG enables imaging of individual layers

    Use of cotton textiles coated by ir(III) tetrazole complexes within ceramic silica nanophases for photo-induced self-marker and antibacterial application

    No full text
    This study was aimed at the production and characterization of coated cotton textiles with luminescent ceramic nanophases doped with cationic Ir(III) tetrazole complexes. We confirmed that SiO2 nanoparticles (NPs) do not affect the phosphorescent properties of the complexes that maintain their emission (610 and 490 nm). For the first time we transferred the luminescence feature from nanosol to textile surface, highlighting the advantages of using nanosilica as an encapsulating and stabilizing matrix. The optimized Ir@SiO2 suspensions were homogenously applied onto the cotton surface by dip-pad-dry-cure technique, as proved by the 2p-fluorescence microscope analysis. Once we verified the self-marker properties of the Ir(III) complex, we observed an excellent washing fastness of the coating with a very limited release. SiO2 in the washing water was quantified at maximum around 1.5 wt% and Ir below the inductively coupled plasma optical emission spectrometry (ICP-OES) detection limit of 1 ppm. A Franz cell test was used to evaluate any possible ex-vivo uptake of Ir@SiO2 nanoparticles across human skin tissues, showing that epidermis and dermis stop over 99% of Ir, implying a reduced impact on human health. The light-induced antimicrobial potential of the Ir@SiO2 were assessed toward both Gram(-) and Gram(+) bacteria. The results encouraged further developments of such functional textiles coated by self-markers and antibacterial active nanophases
    corecore