17 research outputs found

    Resonance electron interaction with five-membered heterocyclic compounds: Vibrational Feshbach resonances and hydrogen-atom stripping

    Get PDF
    Low-energy (0–15 eV) resonance electron attachment to a series of five-membered heterocyclic rings (isoxazole, imidazole, pyrazole, pyrrole, 1-methyl-, and 2-methylimidazole) is studied under gas-phase conditions by means of electron transmission spectroscopy and dissociative electron attachment spectroscopy (DEAS). Experimental spectral features are assigned on the basis of Hartree-Fock and density functional theory calculations. Sharp features, with a width of less than 0.1 eV, observed in the electron transmission spectra of imidazole, pyrazole, and pyrrole close to 0.45 eV, i.e., well below the energy of their lowest-lying π∗ shape resonances detected at 1.90, 1.87, and 2.33 eV, respectively, are associated with formation of negative ion states bound by long-range electron-molecule interactions. Effective range theory calculations which include both dipolar and polarization interactions support this interpretation. In addition to the general observation of cleavage of the N–H bond at incident electron energies close to 2 eV, elimination of as many as three hydrogen atoms from the molecular negative ions is detected at higher energies by DEAS with the only exception of methylated imidazoles. This complex process is associated with ring opening and formation of diatomic hydrogen as one of the neutral fragments, as indicated by the calculations to satisfy the energetic requirements. The present results are of importance for understanding the basic mechanisms of damages caused in living tissues by high-energy radiations

    Low-Energy Electron Capture by 6-Aza-2-thiothymine: Investigations by Electron Attachment and Electron Transmission Spectroscopies

    Get PDF
    The interaction of low-energy (0-10 eV) electrons with 6-aza-2-thiothymine is investigated in the gas phase by studies of sharp structure in the total electron scattering cross section and by mass analysis of the stable or long-lived negative ions produced by electron attachment. The most efficient fragmentation process, occurring at 0.15 eV, involves the ejection of a closed-shell neutral molecule (CH3CN). Ab initio calculations support our proposal that this process leads to ring closure to form a stable four-member heterocyclic anion. A long-lived parent anion with an approximate lifetime of 75 microseconds is observed near zero electron energy, and evidence is also seen for the slow decay of this anion by ejection of CH3CN. Near 3.3 eV, an anion of m/e 41 is produced that is likely to be a metastable valence anion of bent CH3CN, but the dipole-bound anion cannot be ruled out

    Dissociative Electron Attachment to Resveratrol as a Likely Pathway for Generation of the H<sub>2</sub> Antioxidant Species Inside Mitochondria

    No full text
    The electron-attaching properties of polyphenolic compound resveratrol were studied in vacuo by means of dissociative electron attachment (DEA) spectroscopy and in silico using density functional theory calculations. The most intense fragments generated by DEA to isolated resveratrol at thermal electron energy are semiquinone anions and neutral hydrogen molecules. On the basis of the present experimental and theoretical data, a new molecular mechanism for the antioxidant activity of resveratrol is presented. It is suggested that the activity of resveratrol in living cells is driven by dissociative attachment of electrons “leaked” from the respiratory chain to this polyphenolic molecule, followed by the formation of the H<sub>2</sub> antioxidant species inside mitochondria and participation in mitochondrial energy biogenesis

    Why Can Unnatural Electron Acceptors Protect Photosynthesizing Organisms but Kill the Others?

    No full text
    The polychlorinated compounds captafol (CPL) and 2,6-dichloroisonicotinic acid (INA) are able to protect plants acting as a fungicide or an inductor of plant resistance, respectively. At the same time, CPL and INA are dangerous for the respiratory organisms, i.e. mammalians, bacteria, and fungi. The high electron-withdrawing ability of these compounds enables them to serve as unnatural electron acceptors in the cellular ambient near to electron transport pathways located in the thylakoid membrane of chloroplasts or in the mitochondrial respiratory chain. Low-energy electron attachment to CPL and INA in vacuo leads to formation of many fragment species mainly at thermal electron energy as it is shown using dissociative electron attachment spectroscopy. On the basis of the experimental findings, assigned with the support of density functional theory calculations it is suggested that the different bioactivity of CPL and INA in respiratory and photosynthetic organisms is due to the interplay between the dissociative electron attachment process and the energies of electrons leaked from the electron transport pathways

    Dissociative Electron Attachment to Anthralin to Model Its Biochemical Reactions

    No full text
    The antipsoriatic drug anthralin (dithranol) is known to be extensively accumulated inside mitochondria of keratinocytes and to interact with the electron flow of the respiratory chain. Primary products of the one-electron reduction of polyphenolic anthralin observed in vivo are its dehydrogenated anions, which are formed by H-atom abstraction. The same species are mainly generated at low electron energies by dissociative electron attachment (DEA) to anthralin molecules in vacuo. A likely mechanism for the biochemical transformations of anthralin under reductive conditions in vivo is hypothesized on the basis of its DEA properties. The involvement of excited electronic states generated by ultraviolet irradiation of skin is discussed

    Hypothesis for the Mechanism of Ascorbic Acid Activity in Living Cells Related to Its Electron-Accepting Properties

    No full text
    Electron-accepting properties, and in particular resonance dissociative electron attachment (DEA) to ascorbic acid (AA), are investigated by means of DEA spectroscopy in vacuo. The experimental features are assigned in silico and discussed in relation to expected dissociative electron transfer processes in vivo with the support of density functional theory calculations and the polarizable continuum model. It is shown that formation of the two most abundant AA metabolites in living cells, namely monodehydroascorbic acid and dehydroascorbic acid, can be stimulated by cellular electron transfer to AA under reductive conditions. Prooxidant effects caused by AA are suggested to be mediated by hydroxyl radicals formation via the DEA mechanism. The involvement of excited electronic states under UV-irradiation in plants could open additional DEA channels leading to specific AA activity forbidden under dark state conditions

    Role of Resonance Electron Attachment in Phytoremediation of Halogenated Herbicides

    No full text
    This study is aimed to point out the important role played by resonance electron attachment in reductive dehalogenation, in particular in phytoremediation of organic pollutants under conditions of excess negative charge. To model enzymatic reactions occurring in reductive conditions, low-energy electron capture by the halogenated herbicides atrazine and bromoxynil was studied in vacuo using electron transmission spectroscopy. A variety of decay channels of the temporary molecular negative ions was discovered by means of dissociative electron attachment spectroscopy. The experimental results were interpreted with the support of quantum-chemical calculations. Dehalogenation of atrazine and bromoxynil was found to be the dominant decay of the molecular negative ions formed at thermal energies of the incident electrons. It is concluded that formation of negative ions by electron donation in enzymatic active centers followed by their dissociation along the σ bond can be considered as the main mechanism of reductive dehalogenation

    Fragmentation of chlorpyrifos by thermal electron attachment: Likely relation to its metabolism and toxicity.

    No full text
    The energies of formation and dissociative decays of temporary negative ions of the organophosphorus insecticide chlorpyrifos (CPF) are studied using electron transmission spectroscopy (ETS), dissociative electron attachment spectroscopy (DEAS) and quantum-chemical calculations. Three features are displayed by the ETS at 2.4, 3.1 and 4.30 eV, ascribed to empty \uf073* MOs, an higher-lying \u3c0* MO and a core-excited state, respectively. Two stable \uf070* anion states are predicted by the calculations. Most of the negative fragments are detected by DEAS at thermal energies of the incident electrons, being thus associated with dissociation of stable (vibrationally excited) negative ion states formed by electron attachment into the \u3c0* LUMO and LUMO+1. The CPF\u2013 molecular anions (not observed in the present study) are expected to decay by fast dissociation to give the most abundant ([CPF \u2013 HCl]\u2013) species, which in turn dissociates on the microseconds time scale producing as much as six metastable peaks in the mass spectrum. The m/z = 196 and 169 negative fragments, structurally similar to the main metabolites of CPF, 3,5,6-trichloro-2-pyridinol and O,O-diethyl thiophosphate, respectively, are formed by direct decomposition of CPF\u2013. Active radicals able to abstract hydrogen atoms from lipid membranes are generated as neutral counterparts of the observed anion fragments. A likely involvement of DEA into biotransformation of CPF by cytochrome P450 enzymes in a reductive environment producing toxic species and precursors of the main metabolites is briefly discussed
    corecore