321 research outputs found

    Assessing the sensitivity of regression results to unmeasured confounders in observational studies

    Get PDF
    This paper presents a general approach for assessing the sensitivity of the point and interval estimates of the primary exposure effect in an observational study to the residual confounding effects of unmeasured variables after adjusting for measured covariates. The proposed method assumes that the true exposure effect can be represented in a regression model that includes the exposure indicator as well as the measured and unmeasured confounders. One can use the corresponding reduced model that omits the unmeasured confounder to make statistical inferences about the true exposure effect by specifying the distributions of the unmeasured confounder in the exposed and unexposed groups along with the effects of the unmeasured confounder on the outcome variable. Under certain conditions, there exists a simple algebraic relationship between the true exposure effect in the full model and the apparent exposure effect in the reduced model. One can then estimate the true exposure effect by making a simple adjustment to the point and interval estimates of the apparent exposure effect obtained from standard software or published reports. The proposed method handles both binary response and censored survival time data, accommodates any study design, and allows the unmeasured confounder to be discrete or normally distributed. We describe applications to two major medical studies

    Digital Drugs: an anatomy of new medicines

    Get PDF
    Medicines are digitalized as aspects of their regulation and use are embodied in or draw from interlinked computerized systems and databases. This paper considers how this development changes the delivery of health care, the pharma industry, and regulatory and professional structures, as it reconfigures the material character of drugs themselves. It draws on the concept of assemblage in presenting a theory-based analysis that explores digital drugs’ ontological status including how they embody benefit and value. The paper addresses three interconnected domains – that of use of drugs (practice), of research (epistemology) and of regulation (structures)

    Large-scale pharmacogenomic study of sulfonylureas and the QT, JT and QRS intervals: CHARGE Pharmacogenomics Working Group

    Get PDF
    Sulfonylureas, a commonly used class of medication used to treat type 2 diabetes, have been associated with an increased risk of cardiovascular disease. Their effects on QT interval duration and related electrocardiographic phenotypes are potential mechanisms for this adverse effect. In 11 ethnically diverse cohorts that included 71 857 European, African-American and Hispanic/Latino ancestry individuals with repeated measures of medication use and electrocardiogram (ECG) measurements, we conducted a pharmacogenomic genome-wide association study of sulfonylurea use and three ECG phenotypes: QT, JT and QRS intervals. In ancestry-specific meta-analyses, eight novel pharmacogenomic loci met the threshold for genome-wide significance (P<5 × 10−8), and a pharmacokinetic variant in CYP2C9 (rs1057910) that has been associated with sulfonylurea-related treatment effects and other adverse drug reactions in previous studies was replicated. Additional research is needed to replicate the novel findings and to understand their biological basis

    Novel gene variants predict serum levels of the cytokines IL-18 and IL-1ra in older adults

    Get PDF
    Activation of inflammatory pathways measured by serum inflammatory markers such as interleukin-18 (IL-18) and interleukin-1 receptor antagonist (IL-1ra) is strongly associated with the progression of chronic disease states in older adults. Given that these serum cytokine levels are in part a heritable trait, genetic variation may predict increased serum levels. Using the Cardiovascular Health Study and InCHIANTI cohorts, a genome-wide association study was performed to identify genetic variants that influence IL18 and IL-1ra serum levels among older adults. Multiple linear regression models characterized the association between each SNP and log-transformed cytokine values. Tests for multiple independent signals within statistically significant loci were performed using haplotype analysis and regression models conditional on lead SNP in each region. Multiple SNPs were associated with these cytokines with genome-wide significance, including SNPs in the IL18-BCO gene region of chromosome 2 for IL-18 (top SNP rs2250417, P = 1.9×10−32) and in the IL1 gene family region of chromosome 2 for IL-1ra (rs6743376, P = 2.3×10−26). Haplotype tests and conditional linear regression models showed evidence of multiple independent signals in these regions. Serum IL-18 levels were also associated with a region on chromosome 2 containing the NLRC4 gene (rs12989936, P = 2.7×10−19). These data characterize multiple robust genetic signals that influence IL-18 and IL-1ra cytokine production. In particular, the signal for serum IL-18 located on chromosome two is novel and potentially important in inflammasome triggered chronic activation of inflammation in older adults. Replication in independent cohorts is an important next step, as well as molecular studies to better understand the role of NLRC4

    Large-scale whole-exome sequencing association studies identify rare functional variants influencing serum urate levels.

    Get PDF
    Elevated serum urate levels can cause gout, an excruciating disease with suboptimal treatment. Previous GWAS identified common variants with modest effects on serum urate. Here we report large-scale whole-exome sequencing association studies of serum urate and kidney function among ≤19,517 European ancestry and African-American individuals. We identify aggregate associations of low-frequency damaging variants in the urate transporters SLC22A12 (URAT1; p = 1.3 × 10 <sup>-56</sup> ) and SLC2A9 (p = 4.5 × 10 <sup>-7</sup> ). Gout risk in rare SLC22A12 variant carriers is halved (OR = 0.5, p = 4.9 × 10 <sup>-3</sup> ). Selected rare variants in SLC22A12 are validated in transport studies, confirming three as loss-of-function (R325W, R405C, and T467M) and illustrating the therapeutic potential of the new URAT1-blocker lesinurad. In SLC2A9, mapping of rare variants of large effects onto the predicted protein structure reveals new residues that may affect urate binding. These findings provide new insights into the genetic architecture of serum urate, and highlight molecular targets in SLC22A12 and SLC2A9 for lowering serum urate and preventing gout
    corecore