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 SUMMARY

 This paper presents a general approach for assessing the sensitivity of the point and interval esti-
 mates of the primary exposure effect in an observational study to the residual confounding effects
 of unmeasured variables after adjusting for measured covariates. The proposed method assumes
 that the true exposure effect can be represented in a regression model that includes the exposure
 indicator as well as the measured and unmeasured confounders. One can use the corresponding
 reduced model that omits the unmeasured confounder to make statistical inferences about the true
 exposure effect by specifying the distributions of the unmeasured confounder in the exposed and
 unexposed groups along with the effects of the unmeasured confounder on the outcome variable.
 Under certain conditions, there exists a simple algebraic relationship between the true exposure
 effect in the full model and the apparent exposure effect in the reduced model. One can then esti-
 mate the true exposure effect by making a simple adjustment to the point and interval estimates of
 the apparent exposure effect obtained from standard software or published reports. The proposed
 method handles both binary response and censored survival time data, accommodates any study
 design, and allows the unmeasured confounder to be discrete or normally distributed. We describe
 applications to two major medical studies.

 1. Introduction

 Well-conducted randomized controlled experiments have been widely recognized as the decisive
 method for assessing exposures, treatments or policies. Randomized experiments are not feasible

 in many circumstances because of ethical, economic, and other constraints. Instead, observational

 studies, including cohort and case-control studies, are commonly undertaken. Because subjects

 are not assigned to exposure groups at random in observational studies, the apparent association

 between exposure and outcome may result from some unknown or unmeasured covariates that

 are associated with both exposure and outcome. Thus, it would be desirable to investigate how

 the findings of an observational study may be affected by certain variations in the assumptions

 about the unmeasured confounders. If the conclusions are insensitive over a wide range of plausible

 assumptions, then the number of interpretations of the observational data is reduced, and the
 causal conclusions become more defensible.

 This idea of sensitivity analysis can be traced back to Cornfield et al. (1959), who responded to
 Fisher (1958)'s constitutional hypothesis that the apparent association between cigarette smoking
 and lung cancer could be explained by the confounding effects of a genotype that predisposed to

 both smoking and lung cancer. A centerpiece of their argument was a theorem due to Cornfield:

 for a confounder to explain a relative risk of a given magnitude, say, r, this confounder has to be
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 r times more prevalent among the exposed than among the unexposed. Because the lung cancer

 relative risk was approximately 10 for cigarette smokers versus nonsmokers and increased to 20-fold

 for heavy smokers, the existence of such a confounder seemed implausible. This line of statistical

 reasoning played a critical role in the 1964 Surgeon General's Report concluding that "Cigarette.

 smoking is causally related to lung cancer in men."

 Bross (1966) and Schlesselman (1978) obtained results similar to Cornfield's inequality. Rosen-

 baum (1995, Chapter 4) provided the bounds for the significance levels of several common two-

 sample tests and for Hodges-Lehmann estimates. In addition, Rosenbaum and Rubin (1983a)

 discussed the sensitivity analysis on a point estimate for the difference between two success prob-

 abilities in a 2 x 2 x S contingency table. The method of Rosenbaum and Rubin (1983a) speci-

 fies stratum-specific sensitivity parameters, consisting of the overall prevalence of the binary con-

 founder, the confounder's effect on the exposure and the confounder's effect on the binary outcome.

 The method then provides a range of point estimates corresponding to various combinations of the

 sensitivity parameters. By contrast, the methods of Cornfield et al. (1959) and Rosenbaum (1995)

 specify only a single sensitivity parameter and give the corresponding bound for the exposure effect

 that caters to the least favorable or most conservative values of the remaining parameters.

 In this paper, we develop a general yet simple method of sensitivity analysis that shares the

 spirit of the published methods, especially that of Rosenbaum and Rubin (1983a). Formulating the

 problem more broadly than Rosenbaum and Rubin, we provide an alternative solution that applies

 to a variety of statistical models and data structures. Specifically, we assume that the exposure effect

 and the effects of measured and unmeasured confounders can be formulated through a regression

 model. This formulation implies a reduced model that excludes the unmeasured confounder. It

 is possible to estimate the true exposure effect in the full model by fitting the reduced model to

 the observable data provided that one specifies the distribution of the unmeasured confounder in

 each exposure group as well as the effects of the unmeasured confounder on the outcome variable.

 As a matter of fact, given these two sets of sensitivity parameters, there exists a simple algebraic

 relationship between the true exposure effect in the full model and the apparent exposure effect in

 the corresponding reduced model if the unmeasured and measured confounders are approximately

 independent within each exposure group. In such situations, we can draw inferences about the true

 exposure effect by making simple adjustments to the point and interval estimates of the apparent

 exposure effect, which are obtained either from the standard software package or from the published

 paper.

 The proposed method offers several advantages over the existing ones. First, it applies to both

 binary response and censored survival time data and to the corresponding logistic and proportional

 hazards models. Survival time or failure time is an important outcome variable in many observa-

 tional cohort studies, but this endpoint has not been carefully studied in the sensitivity analysis

 literature, although Rosenbaum's method of permutation inferences may be applied to log-rank and

 Gehan-Wilcoxon tests. Second, the proposed method allows adjustment for any type of measured
 confounders, discrete or continuous, whereas the published methods can at most accommodate

 stratification on categorical variables. Third, the unmeasured confounders may be binary or nor-
 mally distributed; the existing literature is confined to a bounded confounder. Finally, we provide

 simple and explicit formulas to adjust both the point and the interval estimates of the apparent ex-

 posure effect in the reduced model. These formulas hold for both binary and survival endpoints and

 are invariant across study designs. For binary endpoint with a binary unmeasured confounder and

 with no adjustment of measured covariates, our results reduce to those of Cornfield, Schlesselman,
 and others.

 2. Binary Outcome

 Let Y be a binary response variable, taking the value 1 if the event of interest (e.g., disease or
 death) occurs, and let X be the exposure indicator, taking the value 1 for the exposed. Also, let Z
 be a set of measured covariates, and let U be an unmeasured confounder. We first assume that the

 response probability is related to X, Z, and U through the log-linear model

 Pr(Y = 1 X, Z, U) = exp (a + oX + yxU + 0'Z), (2.1)

 where or, A3 tYxy (X =0, 1), and 0 are unknown regression parameters. Note that tyo and 7Y1 pertain
 to the effects of U for the unexposed and exposed, respectively. The parameterization A3X + yxxU
 is the same as d3X + 'yoU + ('Y1 - yo)XU. If tyo ) 'Yi, then d3 is the main effect of X under a model
 in which X interacts with U so that d3 cannot be interpreted in isolation. It suffices most practical
 purposes to set -yo t-

This content downloaded from 152.2.71.222 on Wed, 28 Mar 2018 19:50:16 UTC
All use subject to http://about.jstor.org/terms



 950 Biometrics, September 1998

 Since U is unmeasured, one is forced to fit the reduced model

 Pr(Y = 1 1 X, Z) = exp (oa* + SAX + 0* Z), (2.2)

 where c*, 3*, and 0* are potentially different from ar, 3, and 0 of model (2.1). We refer to : and
 /* as the true and apparent exposure effects, respectively. Since A* can be directly estimated from
 the observable data whereas d cannot, it is of great interest to ascertain the relationship between
 /* and :.

 Model (2.1) is slightly different from the logistic regression model,

 Pr(Y=1 1X, Z, U)~ 1exp(a+/3X+ yxU+0'Z)' (2.3) ( | " ) ) l+ exp (ae + oX + 7x U + O/Z); 23
 i.e.,

 logit{Pr(Y = 1 X, Z, U)} = a + OX + 7xU + 0'Z.

 For rare events, the right side of (2.1) is a good approximation to that of (2.3). If Z is excluded from
 models (2.1) and (2.3) and U is binary, then these two models are saturated and do not impose any
 restrictions on the effects of X and U on Y. In this case, models (2.1) and (2.3) are equivalent. In
 the presence of Z, model (2.1) is mathematically more tractable than (2.3). Thus, it is instructive
 to consider model (2.1) first.

 2.1 Log-Linear Regression

 Let F(u I X, Z) be the distribution function of U given X and Z. By the law of conditional
 expectation,

 Pr(Y = 1 X, Z) J Pr(Y = 1 X, Z, u)dF(u I X, Z), (2.4)

 which becomes

 Pr(Y = 1 X, Z) = exp (a + oX + 0'Z)j eYXUdF(u X, Z) (2.5)

 under model (2.1). We will evaluate the right side of the above equation for the cases of binary and
 normally distributed U.

 Binary confounder. Suppose that U is binary such that F(u I X, Z) is a Bernoulli distribution
 with success probability Px,z. Then equation (2.5) becomes

 Pr(Y = 1 | X, Z) = exp (a + OX + O'Z) {e'x Pxz + (1 - Pxz) (2.6)

 For simplicity, we assume that U is independent of Z conditional on X, which implies that Pxz
 does not depend on Z. Under Px,z = Px, equation (2.6) may be written as

 P(Y~~~1IXZ\~~~[lfYo P ( '~ Y'1PI + (1- I
 Pr(Y = 1 X, Z) = exp a + log e o+ -o)+ +log eaoA + (1Po)} Z

 (2.7)

 Comparing the right sides of (2.2) and (2.7), we find that

 eY1Pi + (1-P1) (2.8)
 /*log &YPO + (1 - PO) 28

 or

 f R* /A (2. 9)

 where ft elf, ft* =-l and

 F1P1 + (1 - P1)
 A FP0 + (1 - Po)
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 with 1I = eY1 and 1O = e50. Note that R and R* are, respectively, the true and apparent relative

 risks of disease associated with X, while F1 and 1O are the relative risks of disease associated
 with U among the exposed and unexposed, respectively. Formula (2.9) shows succinctly how the

 prevalences of the unmeasured confounder, P1 and Po, and its relative risks of disease, F1 and

 FO, among the exposed and unexposed determine the relationship between the true and apparent
 relative risks of disease associated with the exposure.

 It is of most interest to examine the adjustment factor A when PI > Po and F1 > FO > 1.
 In such a setting, A is bounded above by F1; this bound is achieved when Po = 0 and PI = 1.

 Under 1O = F7 = I, A is also bounded above by PI/Po; it approaches this bound as IF -, O. In

 applications, it is more informative to evaluate A for specific values of Po, Pi, FO, and F1 rather
 than using the upper bounds.

 Normal confounder. Suppose that, conditional on X and Z, the confounder U is normally

 distributed with mean px,z and unit variance. The standardization of U entails that -yo and YI
 are standardized regression coefficients. A simple integral calculation yields

 J eaxu exp { (u fz)2}du = exp (yxtlXz + 0.5_y),

 which entails that equation (2.5) is

 Pr(Y = 1 X, Z) = exp (a + OX + O'Z + -yxtxz + 0.5yk)2 (2.10)

 As with the binary confounder, considerable simplification arises when U is conditionally

 independent of Z given X. Under [tX,Z = Itx, equation (2.10) can be written as

 Pr(Y = 1 | X, Z) = exp [ag + -yojto + O.5_y2 + {3 + (_YI[1 - -yofto) + 0.5(,y2- _y7)} X + o'Z]

 Thus,

 : (*-y{(tti - -yotto) + 0-5 (Gi 2 2g) }, (2.11)
 or

 R = R*/ exp {( --yo/to) + 0.5 (yi 2 o) (2.12)

 Further simplification arises when -yo = -yI =y, in which case (2.11) and (2.12) reduce to

 - = 5A, (2.13)

 R R* /F6, (2.14)

 where a = [i - [to. Under -yo = -yI, equations (2.13)-(2.14) hold even if U is not conditionally
 independent of Z, but the effects of X and Z on [txz must be additive; i.e., [tyz = Itx + q(Z),
 where q is some arbitrary function of Z. Note that the adjustment factor F6 in (2.14) depends on
 the difference between [tj and [to, not on their actual values.

 Formulas (2.8)and (2.9) and (2.11)to (2.14) enable one to conduct the sensitivity analysis in an
 extremely simple fashion. The sensitivity parameters consist of (Po, PI 1F, F1) and ([to I, F1, F71)
 in the binary and normal cases, respectively. Since A* and consequently R* can be directly estimated
 by fitting model (2.2) to the observed data on (Y, X, Z), we can use formulas (2.8)and (2.9)
 and (2.11) to (2.14) to estimate d and R after specifying the sensitivity parameters. Denote the
 estimators of A*, A, R*, and R by A*, Ad K, and R. Equations (2.8) and (2.11) show that, when
 the sensitivity parameters are fixed at specific values, the variance of d is the same as that of A*.

 The latter can be estimated by the standard estimation theory. The fact that, for fixed values

 of the sensitivity parameters, the estimators d3 and A3* have the same variance implies that the
 adjustment factors for the limits of the confidence intervals for d3 are the same as that of the point
 estimate. In other words, formulas (2.8) and (2.9) and (2.11) to (2.14) apply to both the point and

 the interval estimates of /3. Furthermore, all these results hold for any study design: prospective or
 retrospective, matched or unmatched.
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 If the conditional independence of U and Z given X is not true, then model (2.2) generally cannot

 hold, and there is no explicit relationship between d and A*. Nevertheless, when the sensitivity

 parameters ('Yx, Px,z) and (-yx, Itx,z) are specified in the binary and normal cases, respectively,
 the right sides of models (2.6) and (2.10) involve only the measured variables X and Z and the

 corresponding regression parameters ar, 3 and 0. One may then obtain : and its variance estimator

 by applying the maximum likelihood method or other requisite methods to models (2.6) and (2.10).

 In fact, given any specification of F(u I X, Z) and 7x, one can make inferences about : by fitting
 model (2.5) directly to the observable data (Yi, Xi, Zi) (i =1,.. , rn).

 2.2 Logistic Regression

 Under the logistic model given in (2.3), equation (2.4) becomes

 Pr(Y = 1 X, Z) = exp (a + x + 'Z) X dF(u I X, Z). - , Z) + /3X 'j~~0 1+ exp (a~ + O3X + -YXxu + O'Z)
 (2.15)

 In the presence of covariates Z, equation (2.15) generally does not reduce to a logistic model even

 if F(u I X, Z) has a simple form. In other words, the following model usually fails:

 Pr(Y = 1 X, Z) = exp(c* +*X+O*/Z)
 1 + exp (a* + /3*X + 0/

 i.e.,

 logit{Pr(Y = 1 1 X, Z)} = o* + 1*X + 0*'Z. (2.16)

 Nonetheless, once -yx and F(u I X, Z) are specified, the right side of equation (2.15) involves only
 the measured variables X and Z and the corresponding regression parameters ar, /, and 0. Thus,

 the likelihood type method can be applied to model (2.15) to make inferences about /, as will be

 elaborated in Section 5.

 It is of practical importance to ascertain under what circumstances model (2.16) provides a

 reasonable approximation to model (2.15) and whether simple relationships such as (2.8) and

 (2.11) exist for the logistic regression. Straightforward algebraic manipulations show that model

 (2.15) is

 logit{Pr(Y = 1 I X, Z)} =j + /X + O'Z + g(X, Z), (2.17)

 where

 eOX {1 + exp(ca + /X + O'Z)}Pxz + {1 + exp(ca + /X + -yx +0 'Z)}(1 -Pxz)

 g(X, Z)log {1 + exp(a + OX + 0'Z)} Pxz + {1 + exp(a + oX + -YX + 0'Z)} (1-Pxz)
 for the binary confounder, and

 g(X, Z) =YxI tx,z + 0o-5YX

 f> 0 { 1 +exp (aA-tYk +/3X +tx u + 0'Z) } - exp { _(t- tX)2 } du
 lo 00 {1 + exp(ca + /3X + _YXu + +OZ)}1 exp { (u-bX z)2 } du

 for the normal confounder. If the event is rare or if 1Kyx I is small, g(X, Z) - log{ef x Pxz + (1-
 PX, Z)} in the binary case and g(X, Z) - -yx[tx z + 0.5_Y2 in the normal case. It then follows that,
 under Px z = Px and btx,z = Itx, equation (2.17) becomes

 logit{Pr(Y = I I X, Z)} [ar + log {e'YPo + (1 -o)

 +{/+logCM;O +(1_ } X+ Z (2.18)

 and

 logit{Pr(Y =1 ?X, Z)} (cr + 'yobto + 0.5'y02)

 + {/3+Qyitl~ -' tfo~) + 0.5 ('Yl _'yo) } X+ o'Z (2.19)
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 in the binary and normal cases, respectively. Models (2.18) and (2.19) take the form of (2.16)

 and imply that formulas (2.8) and (2.9) and (2.11) to (2.14) hold approximately for the logistic

 regression. Note that equations (2.13) and (2.14) hold approximately as long as the effects of X and

 Z on pxz are additive. The conditional independence of U and Z given X required by formulas
 (2.8), (2.9), (2.11), and (2.12) will be discussed in Section 5.

 When model (2.3) and consequently model (2.15) hold and model (2.16) does not, the maximum

 likelihood estimator A * under model (2.16) converges to some well-defined limit, say, 13*, which

 minimizes the Kullback-Leibler distance between the true and assumed models (White, 1982). It

 is worthwhile to assess how close 3* is to the value of 3* determined by equation (2.8), (2.11), or

 (2.13), that is, whether the substitution of 1* under model (2.16) for 1* in formula (2.8), (2.11), or

 (2.13) would lead to an approximately unbiased estimator of 1. Unfortunately, no explicit analytic

 expression for 13* exists, so we resort to Monte Carlo simulation, as described below.

 In our simulation studies, the binary responses were generated from model (2.3) with 3 = 0 = 1,

 Tyo = -y, X taking the value 1 for 20% of the subjects and Z being normal with mean X and
 variance 1. The intercept term ag was set at different values to yield certain overall event rates.

 There were 1000 simulation samples, each consisting of 1000 subjects. For each simulation sample,

 we calculated the maximum likelihood estimate /3* under model (2.16) and replaced 1* in formula

 (2.8) or (2.13) with 1* to obtain 1 corresponding to specific values of the sensitivity parameters.

 In the case of binary U, we first set Po = 0.2 and PI = 0.9. Under F = (2,3,4), the Monte
 Carlo estimates for the sampling means of were approximately (1.01, 1.02, 1.03) when the overall
 event rate was 10% and approximately (1.02, 1.05, 1.08) when the overall event rate was 50%. For
 Po = 0.4 and P1 = 0.6, the sampling means of 1 under F = (2, 3,4) were estimated at (1.00, 0.98,

 0.96) and (0.98, 0.96, 0.94) when the overall event rates were 10% and 50%, respectively. Clearly,

 all these sampling means are very close to 1, the true value of 1. In the case of normal U, we

 set the overall event rate at 10%. When ,uo = 0 and DII = 1, the Monte Carlo estimates for the
 sampling means of 1 were approximately (0.99, 0.96, 0.90, 0.80) under -y = (0.25,0.5,0.75, 1). The

 corresponding estimates were approximately (0.99, 0.94, 0.86, 0.75) when ,uo = 0 and p1 = 2. The
 bias of 1 became smaller as the event rate decreased.

 These numerical results suggest that, for binary U, one may obtain 1* and its variance estimate
 from an existing logistic regression software and then use formulas (2.8) and (2.9) to perform the

 sensitivity analysis; for normal U, formulas (2.11) to (2.14) are good approximations only when

 the overall event rate is below 10% or K7Xxi < 0.75, i.e., 0.5 < Fx < 2.

 2.3 An Alternative Parameterization for the Association between U and X

 In Sections 2.1 and 2.2, we parameterized the association between the unmeasured confounder

 U and the exposure indicator X in terms of the conditional distribution of U given X. An

 alternative parameterization, as used by Rosenbaum and Rubin (1983a) and Rosenbaum (1995,
 Chapter 4), specifies the effect of U on X. There is a simple relationship between these two types
 of parameterizations when U is binary. Specifically, let X and P be the overall prevalences of the

 exposure and of the unmeasured confounder, respectively, and let ' be the probability ratio of
 being exposed associated with the unmeasured confounder, i.e., X = Pr(X = 1), P = Pr(U = 1),

 and I = Pr(X = 1 U = 1)/Pr(X = 1 U = 0). Note that ' measures directly the degree of
 departure from randomization due to the unmeasured confounder. By Bayes' theorem,

 T= P1/P
 (1 - P0)/(1 - P)

 which implies that

 p l TP+ 4p (2.20)

 On the other hand, because P = P1 + Po(1 - q$), we have

 PO = P - OP- (2.21)

 By replacing P1 and Po in (2.9) with (2.20) and (2.21) and by replacing P1 in (2.21) with expression
 (2.20), we obtain an expression that relates ft* to ft through F0, F1, 'I, P. and q5.

 We may also measure the effect of U on X by the odds ratio, say, Q. Clearly,

 Q Po(1 -P1) (2.22)
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 Replacing Po in (2.22) by expression (2.21), we can express P1 as a function of P. A, and Q by

 solving a quadratic equation. The resulting expression for PI, together with (2.21), enables us to
 relate R* and R through 1o, 1I, Q, P. and A. This formulation is essentially the same as that
 of Rosenbaum and Rubin (1983a). In view of this connection, the proposed methodology may be

 regarded as a generalization of the pioneering work by Rosenbaum and Rubin. It seems preferable

 to use the probability ratio formulation rather than the odds ratio formulation for the effect of U

 on X not only because the former leads to simpler formulas but also because the probability ratio

 is more relevant than the odds ratio, especially when the exposure is not rare enough to ensure

 adequate approximation of the probability ratio by the odds ratio.

 The parameter ?> may be estimated from the current study or from an external data source, the

 resulting estimator being denoted by ?>. With the restriction that Fo = 1I = ' or Fo = 1I = Q.
 the results of the sensitivity analysis can be summarized in a concise manner, especially if the

 results are insensitive to the variation of P over a broad range of plausible values. The estimation

 of the variance of d or ft is more complicated under the specification of ' or Q than under the

 direct specification of (Po, P1) if one wishes to adjust for the extra random variation due to the
 estimation of ?>. Nonetheless, it is straightforward to establish the asymptotic joint distribution

 of (3*, ?>) by the multivariate central limit theorem and the law of large numbers; the asymptotic
 normality and variance of : then follow from the delta method. The variation of ?> is negligible for

 large studies.

 3. Survival Time

 Let T denote the survival time or failure time of interest, and let X, Z, and U be as defined at
 the start of Section 2. The proportional hazards regression (Cox, 1972) specifies that the hazard

 functions of T conditional on the sets of covariates (X, Z, U) and (X, Z) are, respectively,

 A(t I X, Z, U) A S(t) exp (OX + 7yxU + o'Z) (3.1)

 and

 A(t I X, Z) A S(t) exp (1*X + 0*/Z), (3.2)

 where Ao(.) and A*(.) are arbitrary baseline hazard functions, and (/,yo,'Y1,0) and (3*, *) are
 unknown regression parameters. Models (3.1) and (3.2) parallel (2.1) and (2.2) as well as (2.3) and

 (2.16). As in Section 2, we want to ascertain the relationship between 3* and A.

 Again, let F(u I X, Z) be the distribution function of U given X and Z. Also, let f (t I) and
 S(t I ) denote, respectively, the conditional density and survival functions of T. By elementary
 probability arguments,

 A~t~X, Z)- f~~x~z) f f(t IX, Z, u)dF(u X, Z)
 A(t I X, Z) = S(t I X, Z) = 0?S XZ d0 (3 3) S(t IX, Z) f S(t IX, Z, u)dF(u XI Z)(3)

 Under model (3.1),

 00oP0

 j f(t I X, Z, u)dF(u X, Z) = Ao(t)ex+?Yxu+o Z

 x exp {-Ao(t)e/3X+Yxu+O } dF(u X, Z),
 0 0 00

 j S(t X, Z, u)dF(u X, Z) = exp {-Ao(t)e3X+?yxu+O } dF(u I X, Z),
 -C -00

 where Ao (t) = Ao (s)ds. Thus, (3.3) becomes

 A(t I X, Z) = Ao(t) exp (OX + O'Z) h(t; X, Z), (3.4)

 where

 h~~t;XZ) O f7 X u exp{-Ao (t)e:X?Yx u?OZ }dF(u I X, Z)

 ( ) J>??ooexp {-Ao (t)eI3X+-Y u+O'Z } dF(u I X, Z)

 We evaluate the right side of (3.4) for the binary and normal U.
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 Binary confounder. If F(u I X, Z) is a Bernoulli distribution with success probability Pxz, then

 ehZ x exp {-Ao(t)ex+Yx+o IPx z + exp { - Ao(t)eX+o Z}( (- Px z) (3)
 exp {-Ao(t)eI3X+7'x+0'Z} Px,z + exp {-Ao(t)eI3X+0'Z} (1 -Pxz) (3)

 To make the right side of (3.5) more tractable, we assume that the event is rare or the effect of U on

 T is small, which implies that Ao (t) or I-yx I is small. Then (3.5) simplifies to eYx Pxz + (1-Px,z),
 which entails that (3.4) is

 A(t I X, Z) - Ao (t) exp (X + O'Z) {e OxPx,z + (1-Pxz ) } (3.6)

 If U is conditionally independent of Z given X, then (3.6) is equivalent to

 A(tIl X, Z) ~ Ao(t) {eYoPo + (1-Po)} exp P + (1 I p ) }X + 0 Z (3 7)

 In view of (3.2) and (3.7),

 eYl pi + (1 - PI)

 -og 'YOpO + (I _ P), (3.8)
 which takes the same form as formula (2.8).

 Normal confounder. For the normally distributed U, it can be shown that

 hf70 exp {-Ao(t)eY X?XXU?O } exp { (u jz)2 } du
 h(t; X, Z) = exp (-yx/-x,z + 0.51Yx) 2 )

 J_ exp {Ao (t)O~X +-Yxu+ 0'Z } exp {_(U,-/-x z) du
 (3.9)

 which can be approximated by exp(-yxpx z + 0.5_y2) if Ao(t) or IVyxI is small. Then

 A(t I X, Z) A o (t) exp (OX + e'Z + -yx xz + 0 .5_Y) (3.10)

 which is similar to (2.10). Under ,uxz = /,x, equation (3.10) entails that

 /3 u3*{(-yl(-tl -yo/oto) + 05 (71 -O2)} (3.11)

 If -yo = -Y1 = -y and ,atx,z = [Lx + q(Z), then

 jB jB - 'y6, (3.12)

 where again 6 = j- /-to. Formulas (3.11) and (3.12) parallel (2.11) and (2.13).
 Under model (3.1) with rare events, most of the data information about the event is contained

 in the event indicator rather than the event time. Because the event indicator is binary with

 approximate mean (2.1), it is not surprising that equations (3.8), (3.11), and (3.12) are the same
 as (2.8), (2.11), and (2.12).

 The sensitivity analysis for survival time data can be performed in the same manner as that of

 binary outcome discussed in Section 2. Given the sensitivity parameters (-Yx, Pxrz) and (Cyx, ,Ux,z),
 the partial likelihood theory can be applied to models (3.6) and (3.10), respectively, to make
 inferences about 3, as is discussed further in Section 5. If U is conditionally independent of Z given

 X, one may estimate 3* by fitting model (3.2) with any existing Cox regression software and then
 use formula (3.8) and (3.11) to conduct the sensitivity analysis. If 7Yo = -Y1 and /[lX Z = /1X + q(Z),
 then formula (3.12) may be used.

 As in the setting of logistic regression, it is important to investigate how accurate the

 approximations (3.8), (3.11), and (3.12) are. In general, model (3.2) does not hold exactly because,
 as is evident from (3.5) and (3.9), the factor h(t; X, Z) in (3.4) is a complicated function of t that
 depends on X and Z, which implies that the right side of (3.4) does not reduce to that of (3.2). In
 particular, the hazard functions for the exposed and unexposed are not proportional over time. If
 one fits model (3.2) to the observable data, then the maximum partial likelihood estimator of /3*,

 denoted by /3*, will converge to some well-defined limit, say, p3*, which represents an average over
 time of the log hazard ratios between the exposed and the unexposed (Struthers and Kalbfleisch,

 1986; Lin and Wei, 1989). The question then arises as to how different 3* is from /* used in

 formulas (3.8), (3.11), and (3.12).
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 To answer the above question, we conducted a series of Monte Carlo studies similar to that of

 Section 2.2. The survival times were generated from model (3.1) with Ao(.) = 1, A3 = 0 = 1, -yo = -Y1,
 X taking the value 1 for 20% of the subjects and Z being normal with mean X and variance 1.

 The censoring times were generated from the uniform (O, T) distribution, where T was chosen such
 that a desired percentage of the survival times were censored. Again, there were 1000 simulation

 samples, each with 1000 subjects. For each sample, we calculated the maximum partial likelihood

 estimate /3* under model (3.2) and replaced A* in formula (3.8) or (3.12) by A* to yield /. In the
 case of binary U, we set Po - 0.2 and P1 = 0.9. Under F = (2,3,4), the Monte Carlo estimates
 for the sampling means of 3 were approximately (1.01, 1.01, 1.02) with 90% censoring and (1.00,

 0.98, 0.97) with 50% censoring. Similar results were obtained for other values of Po and P1. In the

 case of normal U, we set ,o - 0 and pli = 1 and created 90% censoring. The sampling means of :
 were found to be approximately (0.99, 0.95, 0.88, 0.79) under y = (0.25,0.5, 0.75, 1). The bias of 3
 increased slightly when pli was changed from 1 to 2 and decreased as censoring became heavier.

 These numerical results suggest that, for binary U, the maximum partial likelihood estimator
 3* under model (3.2) may be used in formula (3.8) to yield an approximately unbiased estimator
 of / given the sensitivity parameters, whereas for normal U, formulas (3.11) and (3.12) are good

 approximations only when the censoring percentage is greater than 90% or IKYXI < 0.75, i.e.,
 0.5 < Fx < 2. The variance of /3* may be estimated by the partial likelihood method or, more
 appropriately, by the sandwich estimator of Lin and Wei (1989), which is available in most software

 packages. For correlated survival times, the robust variance estimator can be found in Lin (1994)

 and is also available in software packages.

 4. Real Examples

 We now apply the methods developed in Sections 2 and 3 to two recently published medical studies.
 The first one is a case-control study investigating the potential role of appetite-suppressant drugs in

 the development of primary pulmonary hypertension (Abenhaim et al., 1996), and the second one is
 a prospective cohort study examining the association between the use of right-heart catheterization

 during the first 24 hours of care in the intensive care unit and subsequent survival (Connors et al.,

 1996). Both studies aroused considerable controversy because they were observational studies that

 raised concerns about the safety of commonly used interventions.

 4.1 Primary Pulmonary Hypertension Study

 Primary pulmonary hypertension (PPH) is a rare, often fatal disease with unknown causes. In the

 early 1990s, PPH developed in a cluster of French patients exposed to derivatives of fenfluramine
 in appetite suppressants used for weight control. This phenomenon prompted a major European

 case-control study that evaluated 95 patients with PPH and 355 controls matched individually

 on gender and age. The investigators used conditional logistic regression to study the association

 between the exposure to appetite suppressants and the development of PPH after adjustment for

 weight-related confounding variables and other suspected risk factors. With the adjustment, the

 odds ratio of PPH among those who had taken appetite suppressants for a total of more than 3

 months was estimated at 23.1, with a 95% confidence interval of (6.9,77.7).
 Because the factors leading to the development of PPH remain enigmatic, it is worthwhile to

 assess the sensitivity of the findings of this case-control study to the assumptions about unmeasured
 confounders. To this end, we display in Table 1 the point and interval estimates for the odds ratio

 of interest after adjustment for an unmeasured binary confounder according to formula (2.9) with

 Fo = Fl = I. Here, P1 and Po are, respectively, the prevalences of the unmeasured confounder
 among those who had used appetite suppressants for more than 3 months and among those who

 had never used them, and F is the odds ratio of PPH associated with the unmeasured confounder.
 We display only the estimates for PI > Po. The estimates will be inflated upward if PI < Po.
 In Table 1, the point estimates are always much higher than 1, whereas the lower limits of the

 95% confidence intervals are greater than 1, except for two entries under F = 10. Recall that the
 adjustment factor A is bounded above by F. Thus, regardless of the values of Po and P1, the point
 estimate will remain above 1 as long as F is less than 23.1, and the lower confidence limit will be
 greater than 1 if F is below 6.9. When F is larger than 6.9, the lower confidence limit may drop
 below 1 if Po is close to 0 and P1 is close to 1.

 It is also informative to assess how the adjustment for an unmeasured normal confounder might

 affect the estimates. Formula (2.14) implies that, under a6 1, the point or interval estimate
 adjusting for the normal confounder will remain above 1 as long as F is less than the unadjusted

 estimate. Under 6 2, the point estimate and the lower limit of the 95%h confidence interval will
 remain above 1 if F is less than 4.81 and 2.63, respectively.
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 Table 1

 The point estimates and 95% confidence intervals for the odds ratio of
 PPH associated with long-term use of appetite suppressant drugs with

 adjustment for an unmeasured binary confounder of specified properties

 PO

 F P1 0.0 0.1 0.2 0.3 0.4 0.5

 2 0.0 23.1

 (6.9,77.7)
 0.2 19.3 21.2 23.1

 (5.8,64.8) (6.3,71.2) (6.9,77.7)
 0.4 16.5 18.2 19.8 21.5 23.1

 (4.9,55.5) (5.4,61.1) (5.9,66.6) (6.4,72.2) (6.9,77.7)
 0.6 14.4 15.9 17.3 18.8 20.2 21.7

 (4.3,48.6) (4.7,53.4) (5.2,58.3) (5.6,63.1) (6.0,68.0) (6.5,72.8)
 0.8 12.8 14.1 15.4 16.7 18.0 19.3

 (3.8,43.2) (4.2,47.5) (4.6,51.8) (5.0,56.1) (5.4,60.4) (5.8,64.8)
 1.0 11.6 12.7 13.9 15.0 16.2 17.3

 (3.5,38.9) (3.8,42.7) (4.1,46.6) (4.5,50.5) (4.8,54.4) (5.2,58.3)

 6 0.0 23.1

 (6.9, 77.7)
 0.2 11.6 17.3 23.1

 (3.5, 38.9) (5.2, 58.3) (6.9, 77.7)
 0.4 7.7 11.6 15.4 19.3 23.1

 (2.3,25.9) (3.5,38.9) (4.6,51.8) (5.8,64.8) (6.9,77.7)
 0.6 5.8 8.7 11.6 14.4 17.3 20.2

 (1.7,19.4) (2.6,29.1) (3.5,38.9) (4.3,48.6) (5.2,58.3) (6.0,68.0)
 0.8 4.6 6.9 9.2 11.6 13.9 16.2

 (1.4,15.5) (2.1,23.3) (2.8,31.1) (3.5, 38.9) (4.1,46.6) (4.8, 54.4)
 1.0 3.9 5.8 7.7 9.6 11.6 13.5

 (1.2,13.0) (1.7,19.4) (2.3, 25.9) (2.9, 32.4) (3.5, 38.9) (4.0,45.3)

 10 0.0 23.1

 (6.9, 77.7)
 0.2 8.3 15.7 23.1

 (2.5, 27.8) (4.7,52.7) (6.9, 77.7)
 0.4 5.0 9.5 14.1 18.6 23.1

 (1.5,16.9) (2.9, 32.1) (4.2,47.3) (5.6, 62.5) (6.9, 77.7)
 0.6 3.6 6.9 10.1 13.4 16.6 19.9

 (1.1,12.1) (2.0,23.1) (3.0, 34.0) (4.0,44.9) (5.0, 55.8) (5.9, 66.8)
 0.8 2.8 5.4 7.9 10.4 13.0 15.5

 (0.8,9.5) (1.6,18.0) (2.4,26.5) (3.1,35.1) (3.9,43.6) (4.6,52.1)
 1.0 2.3 4.4 6.5 8.5 10.6 12.7

 (0.7, 7.8) (1.3,14.8) (1.9,21.8) (2.6,28.7) (3.2,35.7) (3.8,42.7)

 The results of this sensitivity analysis strongly support the investigators' conclusion that the

 long-term use of appetite-suppressant drugs increased the risk of PPH. It should be noted that

 the type of sensitivity analyses used here does not and cannot account for potential detection and
 recall biases, which the investigators judged to be minimal in this study.

 4.2 Right-Heart Catheterization Study

 Many cardiologists and intensive-care physicians believe that the direct measurement of cardiac
 function provided by right-heart catheterization (RHC) is necessary to guide therapy for certain
 critically ill patients and that such management leads to better outcomes. This popular belief is so

 strong that it has prevented the conduct of a randomized clinical trial even though the benefit of

 RHC has never been demonstrated in a clinical trial. Connors et al. (1996) reported a prospective
 cohort study designed to assess the effectiveness of RHC in the initial care of critically ill patients.

 The study involved 5735 patients receiving care in the intensive care unit for one of nine prespecified

 disease categories. The investigators did an exceptionally thorough analysis of their data. Not only

 did they attempt to identify all the major risk factors, but they also constructed a propensity

 score (Rosenbaum and Rubin, 1983b) for RHC to adjust for treatment selection bias. Using a
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 proportional hazards model that included the propensity score as well as nine risk factors, they

 estimated the hazard ratio or relative hazard of death for patients managed with RHC at 1.21 with

 a 95% confidence interval of (1.09, 1.25). It is interesting to assess the sensitivity of this unexpected
 finding to potential unknown confounders.

 Table 2 shows the point and interval estimates for the relative hazard of death associated with

 RHC after adjustment for an unmeasured binary confounder according to formula (3.8) with

 yo = --y_ 1.1, i.e., FO = Fl = I = 3. Here, P1 and Po are, respectively, the prevalences of
 the unmeasured confounder among those who were managed with RHC and among those who

 were not, and F is the relative hazard of death for the unmeasured confounder. As shown in the

 table, the point estimates for the relative hazard of death are no larger than 1.01 if P1 - Po > 0.2,

 and the lower limits of the 95% confidence intervals drop below 1 if PI - Po > 0.1. Furthermore,
 the point estimates are no larger than 0.81 if (PoPI) = (0,0.3), (0.1,0.4), (0.2,0.6), (0.3,0.7),
 (0.4,0.9), or (0.5, 1.0), and the upper confidence limits are about 0.8 or smaller if P1 - Po > 0.5.

 Table 3 displays the estimates for the relative hazard of death associated with RHC under the

 alternative parameterization described in Section 2.3. Here, IF is the probability ratio of RHC use

 associated with the unmeasured confounder, and F is again the relative hazard of death for the

 unmeasured confounder. Under I = F = 2, the point estimates for the relative hazard of death

 are very close to the null value of 1 if 0.2 < P < 0.5; under I = F = 3, the estimates lie between
 0.73 and 0.82 if 0.1 < P < 0.5. In other words, over a broad range of plausible values for the

 prevalence of the unmeasured confounder, ranging from 0.1 to 0.5, a true relative hazard of 0.8

 could be misrepresented as 1.21 if an unmeasured confounder increased both the hazard of death

 and the probability of RHC three-fold, and a true relative hazard of 1.0 could be misrepresented as
 1.21 if an unmeasured confounder increased both the hazard of death and the probability of RHC

 two-fold.

 Connors et al. (1996) also performed a sensitivity analysis. They stated that "the covariate
 missing from the propensity score would have to increase the risk of death 6-fold and increase

 the probability of RHC 6-fold for a true relative hazard of 0.80 to be misrepresented as a relative

 hazard of 1.21. In addition, a true relative hazard of 1.0 could be misrepresented as 1.21 if a missing

 Table 2

 The point estimates and 95% confidence intervals for the relative
 hazard of death associated with RHC use with adjustment for an

 unmeasured binary confounder having relative hazard of death of 3

 PO

 P1 0.0 0.1 0.2 0.3 0.4 0.5

 0.0 1.21

 (1.09,1.25)
 0.1 1.01 1.21

 (0.91,1.04) (1.09,1.25)
 0.2 0.86 1.04 1.21

 (0.78, 0.89) (0.93,1.07) (1.09,1.25)
 0.3 0.76 0.91 1.06 1.21

 (0.68, 0.78) (0.82,0.94) (0.95,1.09) (1.09,1.25)
 0.4 0.67 0.81 0.94 1.08 1.21

 (0.61,0.69) (0.73,0.83) (0.85,0.97) (0.97,1.11) (1.09,1.25)
 0.5 0.60 0.73 0.85 0.97 1.09 1.21

 (0.55, 0.62) (0.65, 0.75) (0.76, 0.88) (0.87,1.00) (0.98,1.12) (1.09,1.25)
 0.6 0.55 0.66 0.77 0.88 0.99 1.10

 (0.50,0.57) (0.59,0.68) (0.69,0.80) (0.79,0.91) (0.89,1.02) (0.99,1.14)
 0.7 0.50 0.60 0.71 0.81 0.91 1.01

 (0.45, 0.52) (0.55, 0.62) (0.64, 0.73) (0.73,0.83) (0.82,0.94) (0.91,1.04)
 0.8 0.47 0.56 0.65 0.74 0.84 0.93

 (0.42, 0.48) (0.50, 0.58) (0.59, 0.67) (0.67,0.77) (0.75,0.87) (0.84, 0.96)
 0.9 0.43 0.52 0.60 0.69 0.78 0.86

 (0.39, 0.45) (0.47, 0.54) (0.55, 0.62) (0.62, 0.71) (0.70, 0.80) (0.78, 0.89)
 1.0 0.40 0.48 0.56 0.65 0.73 0.81

 (0.36, 0.42) (0.44, 0.50) (0.51, 0.58) (0.58, 0.67) (0.65, 0.75) (0.73, 0.83)

 Note: P1 and P0 are the prevalences of the unmeasured confounder among the RHC users and nonusers,
 respectively.
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 Table 3

 The prevalences of the unmeasured confounder among the users and nonusers of

 RHC, P1, and Po and the corresponding point estimates and 95% confidence intervals

 for the relative hazard of death associated with RHC, R, and 95% CI under a direct
 parameterization for the effect of an unmeasured binary confounder on the use of RHC

 = I'=2 = I'=3

 P P1 PO ft 95% CI P1 Po ft 95% CI

 0.1 0.18 0.05 1.07 (0.97,1.11) 0.25 0.01 0.82 (0.74,0.85)
 0.2 0.33 0.12 1.01 (0.91,1.05) 0.43 0.06 0.73 (0.66, 0.75)
 0.3 0.46 0.20 0.99 (0.90,1.03) 0.56 0.14 0.73 (0.66, 0.75)
 0.4 0.57 0.29 1.00 (0.90,1.03) 0.67 0.24 0.76 (0.69, 0.79)
 0.5 0.67 0.40 1.01 (0.91,1.05) 0.75 0.35 0.82 (0.74,0.85)
 0.6 0.75 0.51 1.04 (0.94,1.08) 0.82 0.47 0.89 (0.80,0.92)
 0.7 0.82 0.62 1.08 (0.97,1.11) 0.88 0.59 0.96 (0.87,0.99)
 0.8 0.89 0.75 1.12 (1.01,1.16) 0.92 0.72 1.04 (0.94,1.08)
 0.9 0.95 0.87 1.16 (1.05,1.20) 0.96 0.86 1.12 (1.01,1.16)

 Note: P is the overall prevalence of the unmeasured confounder; T and F are, respectively, the probability

 ratio of RHC and relative hazard of death associated with the unmeasured confounder. The observed

 prevalence of RHC, q, was 0.38, with an estimated standard error of 0.006. We did not adjust for the

 variation of q in constructing the 95% confidence intervals, but the variation is too small to make an

 appreciable difference.

 covariate that simultaneously increased the risk of death 3-fold and the probability of RHC 3-fold

 was not accounted for in the propensity score." These results appear to differ from those described

 in the preceding paragraph. There are several reasons for these discrepancies. First, because of the

 lack of sensitivity analysis methods for Cox regression, Connors et al. obtained their results by

 applying the method of Rosenbaum and Rubin (1983a) to the binary outcome of 30-day mortality

 rather than patient survival time. The point estimate for the odds ratio of death as actually used

 in their sensitivity analysis was 1.29, which is slightly higher than the reported relative hazard

 estimate of 1.21. More important, the method of Rosenbaum and Rubin formulates the effect of

 the unmeasured confounder on treatment selection, which in this case is the use of RHC, in terms

 of the odds ratio, but Connors et al. inadvertently described this odds ratio as the probability

 ratio in their statement. Because RHC is a common procedure, an increase in the probability of

 RHC translates into a larger increase in the odds of RHC. Thus, misinterpreting the odds ratio of

 RHC as the probability ratio of RHC resulted in an overestimation of the effects of an unmeasured

 confounder that would be required to misrepresent a neutral or beneficial effect of RHC as harmful.

 Dr. Connors confirmed that "risk of death," "probability of RHC," and "relative hazard of 1.21"

 in their statement should read "odds of death," "odds of RHC," and "odds ratio of 1.29." Given

 this clarification, we performed an additional sensitivity analysis on the odds ratio estimate of 1.29

 using the sensitivity parameters that were actually used by Conners et al. For P = 0.5, which is

 the overall prevalence implicitly assumed by Connors et al., we estimated the true odds ratios of

 death associated with RHC at 0.99 and 0.73 under Q = F = 3 and Q = F = 6, respectively, which
 are close to the values of 1 and 0.8 obtained by Connors et al. Here, Q is the odds ratio of RHC

 associated with the unmeasured confounder.

 It should be pointed out that, because of the extraordinary efforts made by the investigators to

 identify and adjust for all the known risk factors, it is unlikely that there exists an unmeasured

 confounder with Q = F = 3 or 6 even though these were the values considered by the investigators in
 their sensitivity analysis. On the other hand, the lower limit of the observed 95% confidence interval
 was 1.09, which is not far above the null value of 1.0. Thus, the adjustment for an unmeasured

 confounder that has only modest effects on the use of RHC and death would drop the lower

 confidence limit below 1 or even 0.8.

 The results of our sensitivity analysis provide additional insights into this important study and

 imply perhaps greater uncertainty about the role of RHC than those stated in the original report.

 The observed relative hazard of 1.21 with a 95%X confidence interval of (1.09, 1.25) suggests a modest
 increase in the hazard of death due to RHC and could represent a true relative hazard of 1 or 0.8

 if there existed an unmeasured confounder of moderate independent effects. Thus, this study did
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 not provide strong evidence for either a harmful or beneficial effect of RHC. It would be desirable

 to carry out a randomized controlled clinical trial, as recommended by Connors et al. (1996).

 Incidentally, the censoring percentage in this study was approximately 65%. According to the

 simulation results reported at the end of Section 3, formula (3.8) is a good approximation under

 such a censoring level, whereas formulas (3.11) and (3.12) may not be. Thus, we did not perform

 a sensitivity analysis with an unmeasured normal confounder for this study.

 5. Discussion and Further Results

 Observational studies are subject to potential biases induced by unmeasured or unknown

 confounders. Many epidemiologists use a rule of thumb that the actual relative risk may be off

 by a factor of 2 because of unrecognized confounders. That rule comports well with the results

 shown in Tables 1-3.

 If 1o = F1, then formula (2.9) takes the same form as formula (1) of Schlesselman (1978),

 which becomes formula (1) of Cornfield et al. (1959) under R = 1. Thus, Section 2 establishes

 that the basic relationships between the true and apparent associations derived by Cornfield and

 Schlesselman for the simple 2 x 2 table with an unmeasured binary confounder continue to hold

 when the log-linear/logistic regression models are used to adjust for the measured confounders that

 are conditionally independent of the unmeasured binary confounder. Section 3 further demonstrates

 that similar relationships hold for the Cox regression with censored survival data. The availability of

 simple and explicit formulas, such as (2.8) and (2.9), (2.11) to (2.14), (3.8), and (3.11) to (3.12), will

 facilitate the use of the powerful tool of sensitivity analysis by practitioners. It is straightforward

 to show that these formulas hold when the corresponding regression models are further stratified

 on some categorical variables provided that 3, 0, and the sensitivity parameters remain the same

 among the strata.

 Compared with the published methods, the proposed technique has the advantage of

 accommodating both discrete and continuous covariates. In observational studies, it is desirable

 and customary to collect information on all previously identified confounders and to adjust for

 them in the estimation of the exposure effect. The method of sensitivity analysis presented in

 this paper enables one to assess the residual confounding effects due to unmeasured or unknown

 covariates after adjusting for the effects of the measured covariates. Without the adjustment for the

 known and measured confounders, the sensitivity analysis would need to encompass much broader

 ranges of values for the sensitivity parameters and therefore become less informative.

 One complication in assessing the sensitivity of the estimate of exposure effect that adjusts

 for covariates through nonlinear regression is that the reduced model that omits the unmeasured

 confounder does not hold exactly. However, the analytical and numerical investigations in Sections

 2 and 3 demonstrated that the reduced logistic model (2.16) and proportional hazards model

 (3.2) provide reasonable approximations for rare events. The requirement of rare events is not a

 major limitation of the proposed methodology because the rarity of the event is often one of the

 main reasons for conducting observational studies, especially case-control studies. Furthermore,

 the numerical studies in Sections 2 and 3 indicated that, for unmeasured binary confounders, the

 approximations are adequate even if events are not rare.

 Formulas (2.8) and (2.9), (2.11) and (2.12), (3.8), and (3.11) require the conditional independence

 of U and Z given X. This assumption may be satisfied if, e.g., U is a genetic trait and Z consists of

 environmental factors. To avoid this assumption, one can fit model (2.17) or (3.4) to the observable
 data by specifying the nature of dependence between U and Z, that is, Pxz or ,uxz, together with

 -yx For rare events with binary or normal U, the likelihood score function and observed Fisher

 information matrix for (a, A 0) of model (2.17) are, respectively,

 n1 Xi Zi

 i(a, )3, 3) = r(Xi , Zi) {1 - ir(Xi , ZI)}Xi Xi XiZi 1
 i~l Zi Xi~i Zi i

 where

 r(X Z) -=1 exp{? +3 X+' Z + g(X, Z)}
 1 + expi{a+X+ Z+g(XZ)}
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 The key difference between the current setting and standard logistic regression is that here ir(X, Z)

 involves the extra term g(X, Z), but g(X, Z) is free of (a, /, 0). Let (&, j3, 0) be the solution to
 1(oe, 1, 0) = 0. For large n, (&,3,) is approximately normal with mean (a, j3, 0) and covariance
 matrix i-l (&, 3, 0). For rare events with binary or normal U, the factor h(t; X, Z) in (3.4) does not
 depend on t or (/3,0); therefore, we can apply the partial-likelihood procedures for standard Cox

 regression to model (3.4) by replacing the exponential regression function exp(/3X + 0'Z) involved
 in the score function and information matrix with exp(/3X + O'Z)h(t; X, Z). If events are not rare,
 then the maximum likelihood estimation of model (2.17) is complicated and the partial likelihood

 for model (3.4) intractable.

 In applications, the direct fitting of models (2.17) and (3.4) is not very appealing for several

 reasons. First, it is difficult to specify the dependence between U and Z because U is unobserved;

 such a detailed specification leads to too many sensitivity parameters and consequently a less

 informative analysis. Second, the fitting of these two models requires the access to raw data. Third,

 because of the involvement of g(X, Z) and h(X, Z), standard software for logistic and Cox regression

 cannot be used directly.

 It is of practical importance to ascertain what kind of approximations formulas (2.8) and (2.9),

 (2.11) and (2.12), (3.8), and (3.11) provide when U and Z are not conditionally independent given

 X. For rare events with binary U, (2.17) can be written as

 logit{Pr(Y = I I X, Z)} [a + log e- Po,z + (1 -Po,z)}]

 + { + log P' Z+ (1 - P Z) X + 0'Z, (5.1)

 which reduces to (2.18) if PX,Z = Px. Without the conditional independence, (5.1) does not
 reduce to (2.18), which implies that model (2.16) does not hold. If one still fits model (2.16) to

 the observable data (Yi, Xi, Zi) (i = 1,... ,In), then, as mentioned in Section 2.2, the maximum
 likelihood estimator (&*, p3*, 6*) converges to the constant vector, denoted by (&*, /3*, 0*) which
 minimizes the Kullback-Leibler distance between models (5.1) and (2.16). Comparison of the

 regression coefficients for X between these two models suggests that

 <3* ?!+logA,

 or

 /3?13 j-logA, (5.2)

 where

 - max e'yiPi z + (1 - P1Z.)
 A = max -

 z eYOPOz + (1 -P1Z)

 Inequality (5.2) implies that the right side of (2.8) provides a lower bound for /3 if (P1, Fo) in (2.8)

 is the combination of (P1,z, Poz) that yields the maximum adjustment factor A among all possible
 values of Z. Formulas (2.9), (2.11) to (2.12), (3.8), and (3.11) may be interpreted similarly.

 In this paper, we focused on binary response and censored survival data because they are the

 two most common endpoints in observational studies, especially in biomedical applications. The

 approach taken here may also be applied to other outcome measures. It is worthwhile to discuss

 briefly the linear regression for continuous response variables. Let Y be a continuous response

 variable, and let X, Z, and U be as defined in Sections 2 and 3. Suppose that Y is related to X,

 Z, and U through the linear model

 Y =/X + -YXU + 0'Z + Ec

 and that the model being fitted is

 Y = *X + ?0*/Z +Ze*,

 where (/3,v -o, -0) and (/3*-0*) are unknown regression parameters, and e and e* are error terms
 with unspecified distributions. For survival data, it is common to set Y =log T, which corresponds
 to the accelerated failure time model (Kalbfleisch and Prentice, 1980, pp. 32-34). It is easy to show

 that, under the conditional independence of U and Z given X,

 /3 /3 -B -('lml - 'omo), (5.3)
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 where ml and mo are the means of U for the exposed and the unexposed, respectively. If

 -yo = -yl -y, then equation (5.3) reduces to

 _ = S*- yd, (5.4)
 where d ml - mo. Formula (5.4) does not require the conditional independence of U and Z,
 but the effects of X and Z on the mean of U must be additive. Rosenbaum (1986) used a formula

 similar to (5.4) to study the effect of dropping out of high school on cognitive achievement test

 scores. For noncensored data, 3* can be estimated by the least-squared method. Draper and Smith

 (1981, Section 12) gave a general account of the bias in the least-squared estimator due to omission

 of covariates. The estimation of 3* for censored survival data has been studied by Tsiatis (1990);

 Wei, Ying, and Lin (1990); and Lai and Ying (1991).
 The new method as well as all the published methods deal only with a single unmeasured

 confounder. The approach taken in Sections 2 and 3 can be generalized to the setting of multiple

 unmeasured confounders. One would then need to specify the joint distribution of the confounders

 as well as their joint effects on the outcome variable. A more practical alternative is to simply

 treat U as a composite score constructed from a set of unmeasured confounders. In this regard, a

 normal U may represent a linear combination of several confounders and a binary U the dichotomy

 of high risk versus low risk determined by multiple risk factors. The use of a single unmeasured

 confounder is a less severe restriction when all the known confounders are adjusted for through

 regression modeling.

 This paper complements the current literature on misspecified nonlinear regression models. Gail,

 Wieand and Piantadosi (1984), Lagakos and Schoenfeld (1984), and Struthers and Kalbfleisch
 (1986) investigated the bias for the estimator of treatment effect in randomized experiments when
 relevant covariates are omitted from logistic and proportional hazards models. Our paper extends

 their results to nonrandomized studies in which the omitted covariates are not independent of

 treatment.
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 RESUME

 L'article present une approche generate qui permet dans une etude d'observation, d'evaluer la
 sensibility, a de potentielles covariables non observees, de estimation et de lintervalle de confiance
 correspondent a lPeffet d'une exposition, apres ajustement sur des variables connues. La methode
 proposed suppose que leffet reel de exposition puisse 6tre modelise par une regression qui incluera
 lindicateur d'exposition ainsi que les covariables observees et non observees. On peut alors utiliser
 un module dit "reduit", car il ne prend pas en compte les covariables non observees, pour obtenir
 une inference sur leffet reel de exposition, en specifiant la distribution de la covariable omise pour
 le groupe expose et le groupe non expose ainsi que la relation entre la covariable non observed
 et l'evenement d'interet. Sous certaines conditions, il existe une relation algebrique simple entre
 leffet reel de exposition sous le module complet et leffet observe de exposition sous le module
 reduit. On peut alors estimer leffet reel de exposition par un simple ajustement de estimation
 et de lintervalle de confiance de leffet observe prealablement obtenu par les methodes de calculs
 classiques ou par les donnees de la literature. La methode proposee s'applique aussi bien aux
 donnees binaires qu'aux donnees censurees, elle est adaptee a tous les types d'etude et peut prendre
 en compte des variables oubliees discretes ou distributes selon une loi normale. Nous presentons
 application de ces methodes a deux grandes etudes medicales.
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