14 research outputs found

    Discovery of two warm mini-Neptunes with contrasting densities orbiting the young K3V star TOI-815

    Get PDF
    We present the discovery and characterization of two warm mini-Neptunes transiting the K3V star TOI-815 in a K–M binary system. Analysis of its spectra and rotation period reveal the star to be young, with an age of 200−200+400 Myr. TOI-8l5b has a 11.2-day period and a radius of 2.94 ± 0.05 R⊕ with transits observed by TESS, CHEOPS, ASTEP, and LCOGT. The outer planet, TOI-8l5c, has a radius of 2.62 ± 0.10 R⊕, based on observations of three nonconsecutive transits with TESS; targeted CHEOPS photometry and radial velocity follow-up with ESPRESSO were required to confirm the 35-day period. ESPRESSO confirmed the planetary nature of both planets and measured masses of 7.6 ± 1.5 M⊕ (ρP = 1.64−0.31+0.33 g cm−3) and 23.5 ± 2.4 M⊕ (ρP = 7.2−1.0+1.1 g cm−3), respectively. Thus, the planets have very different masses, which is unusual for compact multi-planet systems. Moreover, our statistical analysis of mini-Neptunes orbiting FGK stars suggests that weakly irradiated planets tend to have higher bulk densities compared to those undergoing strong irradiation. This could be ascribed to their cooler atmospheres, which are more compressed and denser. Internal structure modeling of TOI-815b suggests it likely has a H-He atmosphere that constitutes a few percent of the total planet mass, or higher if the planet is assumed to have no water. In contrast, the measured mass and radius of TOI-815c can be explained without invoking any atmosphere, challenging planetary formation theories. Finally, we infer from our measurements that the star is viewed close to pole-on, which implies a spin-orbit misalignment at the 3σ level. This emphasizes the peculiarity of the system’s orbital architecture, and probably hints at an eventful dynamical history

    Transmission spectroscopy of the ultra-hot Jupiter MASCARA-4 b: Disentangling the hydrostatic and exospheric regimes of ultra-hot Jupiters

    Get PDF
    Ultra-hot Jupiters (UHJs), rendering the hottest planetary atmospheres, offer great opportunities of detailed characterisation with high-resolution spectroscopy. MASCARA-4 b is a recently discovered close-in gas giant belonging to this category. In order to refine system and planet parameters, we carried out radial velocity measurements and transit photometry with the CORALIE spectrograph and EulerCam at the Swiss 1.2m Euler telescope. We observed two transits of MASCARA-4 b with the high-resolution spectrograph ESPRESSO at ESO's Very Large Telescope. We searched for atomic, ionic, and molecular species via individual absorption lines and cross-correlation techniques. These results are compared to literature studies on UHJs characterised to date. With CORALIE and EulerCam observations, we updated the mass of MASCARA-4 b (1.675 +/- 0.241 Jupiter masses) as well as other system and planet parameters. In the transmission spectrum derived from ESPRESSO observations, we resolve excess absorption by Hα\alpha, HÎČ\beta, Na D1 & D2, Ca+ H & K, and a few strong individual lines of Mg, Fe and Fe+. We also present the cross-correlation detection of Mg, Ca, Cr, Fe and Fe+. The absorption strength of Fe+ significantly exceeds the prediction from a hydrostatic atmospheric model, as commonly observed in other UHJs. We attribute this to the presence of Fe+ in the exosphere due to hydrodynamic outflows. This is further supported by the positive correlation of absorption strengths of Fe+ with the Hα\alpha line. Comparing transmission signatures of various species in the UHJ population allows us to disentangle the hydrostatic regime (as traced via the absorption by Mg and Fe) from the exospheres (as probed by Hα\alpha and Fe+) of the strongly irradiated atmospheres.Comment: 13 pages, 9 figures, accepted to A&

    TESS Giants Transiting Giants V -- Two hot Jupiters orbiting red-giant hosts

    Full text link
    In this work we present the discovery and confirmation of two hot Jupiters orbiting red-giant stars, TOI-4377 b and TOI-4551 b, observed by TESS in the southern ecliptic hemisphere and later followed-up with radial-velocity (RV) observations. For TOI-4377 b we report a mass of $0.957^{+0.089}_{-0.087} \ M_\mathrm{J}andainflatedradiusof and a inflated radius of 1.348 \pm 0.081 \ R_\mathrm{J}orbitinganevolvedintermediate−massstar( orbiting an evolved intermediate-mass star (1.36 \ \mathrm{M}_\odot,, 3.52 \ \mathrm{R}_\odot;TIC394918211)onaperiodofof; TIC 394918211) on a period of of 4.378days.ForTOI−4551bwereportamassof days. For TOI-4551 b we report a mass of 1.49 \pm 0.13 \ M_\mathrm{J}andaradiusthatisnotobviouslyinflatedof and a radius that is not obviously inflated of 1.058^{+0.110}_{-0.062} \ R_\mathrm{J},alsoorbitinganevolvedintermediate−massstar(, also orbiting an evolved intermediate-mass star (1.31 \ \mathrm{M}_\odot,, 3.55 \ \mathrm{R}_\odot;TIC204650483)onaperiodof; TIC 204650483) on a period of 9.956days.WeplacebothplanetsincontextofknownsystemswithhotJupitersorbitingevolvedhosts,andnotethatbothplanetsfollowtheobservedtrendoftheknownstellarincidentflux−planetaryradiusrelationobservedfortheseshort−periodgiants.Additionally,weproduceplanetaryinteriormodelstoestimatetheheatingefficiencywithwhichstellarincidentfluxisdepositedintheplanetâ€Čsinterior,estimatingvaluesof days. We place both planets in context of known systems with hot Jupiters orbiting evolved hosts, and note that both planets follow the observed trend of the known stellar incident flux-planetary radius relation observed for these short-period giants. Additionally, we produce planetary interior models to estimate the heating efficiency with which stellar incident flux is deposited in the planet's interior, estimating values of 1.91 \pm 0.48\%and and 2.19 \pm 0.45\%$ for TOI-4377 b and TOI-4551 b respectively. These values are in line with the known population of hot Jupiters, including hot Jupiters orbiting main sequence hosts, which suggests that the radii of our planets have reinflated in step with their parent star's brightening as they evolved into the post-main-sequence. Finally, we evaluate the potential to observe orbital decay in both systems.Comment: 14 pages with 8 figures and 6 tables. Accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Three low-mass companions around aged stars discovered by TESS

    Get PDF
    We report the discovery of three transiting low-mass companions to aged stars: a brown dwarf (TOI-2336b) and two objects near the hydrogen burning mass limit (TOI-1608b and TOI-2521b). These three systems were first identified using data from the Transiting Exoplanet Survey Satellite (TESS). TOI-2336b has a radius of 1.05±0.04 RJ1.05\pm 0.04\ R_J, a mass of 69.9±2.3 MJ69.9\pm 2.3\ M_J and an orbital period of 7.71 days. TOI-1608b has a radius of 1.21±0.06 RJ1.21\pm 0.06\ R_J, a mass of 90.7±3.7 MJ90.7\pm 3.7\ M_J and an orbital period of 2.47 days. TOI-2521b has a radius of 1.01±0.04 RJ1.01\pm 0.04\ R_J, a mass of 77.5±3.3 MJ77.5\pm 3.3\ M_J and an orbital period of 5.56 days. We found all these low-mass companions are inflated. We fitted a relation between radius, mass and incident flux using the sample of known transiting brown dwarfs and low-mass M dwarfs. We found a positive correlation between the flux and the radius for brown dwarfs and for low-mass stars that is weaker than the correlation observed for giant planets.Comment: 20 pages, 13 figures; submitted to MNRA

    A long-period transiting substellar companion in the super-Jupiters to brown dwarfs mass regime and a prototypical warm-Jupiter detected by TESS

    Get PDF
    We report on the confirmation and follow-up characterization of two long-period transiting substellar companions on low-eccentricity orbits around TIC 4672985 and TOI-2529, whose transit events were detected by the TESS space mission. Ground-based photometric and spectroscopic follow up from different facilities, confirmed the substellar nature of TIC 4672985 b, a massive gas giant, in the transition between the super-Jupiters and brown-dwarfs mass regime. From the joint analysis we derived the following orbital parameters: P = 69.0480+0.0004−0.0005 d, Mp = 12.74+1.01−1.01 MJ, Rp =1.026+0.065−0.067 RJ and e = 0.018+0.004−0.004 . In addition, the RV time series revealed a significant trend at the ∌ 350 m s−1 yr−1level, which is indicative of the presence of a massive outer companion in the system. TIC 4672985 b is a unique example of a transiting substellar companion with a mass above the deuterium-burning limit, located beyond 0.1 AU and in a nearly circular orbit. These planetary properties are difficult to reproduce from canonical planet formation and evolution models. For TOI-2529 b, we obtained the following orbital parameters: P = 64.5949+0.0003−0.0003 d, Mp =2.340+0.197−0.195 MJ, Rp = 1.030+0.050−0.050 RJ and e = 0.021+0.024−0.015 , making this object a new example of a growing population of transiting warm giant planets

    A long-period transiting substellar companion in the super-Jupiters to brown dwarfs mass regime and a prototypical warm-Jupiter detected by TESS

    Full text link
    We report on the confirmation and follow-up characterization of two long-period transiting substellar companions on low-eccentricity orbits around TIC 4672985 and TOI-2529, whose transit events were detected by the TESS space mission. Ground-based photometric and spectroscopic follow-up from different facilities, confirmed the substellar nature of TIC 4672985 b, a massive gas giant, in the transition between the super Jupiters and brown dwarfs mass regime. From the joint analysis we derived the following orbital parameters: P = 69.0480 d, Mp = 12.74 Mjup, Rp = 1.026 Rjup and e = 0.018. In addition, the RV time series revealed a significant trend at the 350 m/s/yr level, which is indicative of the presence of a massive outer companion in the system. TIC 4672985 b is a unique example of a transiting substellar companion with a mass above the deuterium-burning limit, located beyond 0.1 AU and in a nearly circular orbit. These planetary properties are difficult to reproduce from canonical planet formation and evolution models. For TOI-2529 b, we obtained the following orbital parameters: P = 64.5949 d, Mp = 2.340 Mjup, Rp = 1.030 Rjup and e = 0.021, making this object a new example of a growing population of transiting warm giant planets.Comment: Accepted in A&

    Three Saturn-mass planets transiting F-type stars revealed with TESS and HARPS

    Get PDF
    While the sample of confirmed exoplanets continues to increase, the population of transiting exoplanets around early-type stars is still limited. These planets allow us to investigate the planet properties and formation pathways over a wide range of stellar masses and study the impact of high irradiation on hot Jupiters orbiting such stars. We report the discovery of TOI-615b, TOI-622b, and TOI-2641b, three Saturn-mass planets transiting main sequence, F-type stars. The planets were identified by the Transiting Exoplanet Survey Satellite (TESS) and confirmed with complementary ground-based and radial velocity observations. TOI-615b is a highly irradiated (∌\sim1277 F⊕F_{\oplus}) and bloated Saturn-mass planet (1.69−0.06+0.05^{+0.05}_{-0.06}RJupR_{Jup} and 0.43−0.08+0.09^{+0.09}_{-0.08}MJupM_{Jup}) in a 4.66 day orbit transiting a 6850 K star. TOI-622b has a radius of 0.82−0.03+0.03^{+0.03}_{-0.03}RJupR_{Jup} and a mass of 0.30−0.08+0.07^{+0.07}_{-0.08}~MJupM_{Jup} in a 6.40 day orbit. Despite its high insolation flux (∌\sim600 F⊕F_{\oplus}), TOI-622b does not show any evidence of radius inflation. TOI-2641b is a 0.37−0.04+0.05^{+0.05}_{-0.04}MJupM_{Jup} planet in a 4.88 day orbit with a grazing transit (b = 1.04−0.06+0.05^{+0.05}_{-0.06 }) that results in a poorly constrained radius of 1.61−0.64+0.46^{+0.46}_{-0.64}RJupR_{Jup}. Additionally, TOI-615b is considered attractive for atmospheric studies via transmission spectroscopy with ground-based spectrographs and JWST\textit{JWST}. Future atmospheric and spin-orbit alignment observations are essential since they can provide information on the atmospheric composition, formation and migration of exoplanets across various stellar types.Comment: 16 pages, 17 figures, submitted to A&

    An old warm Jupiter orbiting the metal-poor G-dwarf TOI-5542

    Get PDF
    We report the discovery of a 1.32−0.10+0.10 MJup planet orbiting on a 75.12 day period around the G3V 10.8−3.6+2.1 Gyr old star TOI-5542 (TIC 466206508; TYC 9086-1210-1). The planet was first detected by the Transiting Exoplanet Survey Satellite (TESS) as a single transit event in TESS Sector 13. A second transit was observed 376 days later in TESS Sector 27. The planetary nature of the object has been confirmed by ground-based spectroscopic and radial velocity observations from the CORALIE and HARPS spectrographs. A third transit event was detected by the ground-based facilities NGTS, EulerCam, and SAAO. We find the planet has a radius of 1.009−0.035+0.036 RJup and an insolation of 9.6−0.8+0.9 S⊕, along with a circular orbit that most likely formed via disk migration or in situ formation, rather than high-eccentricity migration mechanisms. Our analysis of the HARPS spectra yields a host star metallicity of [Fe/H] = −0.21 ± 0.08, which does not follow the traditional trend of high host star metallicity for giant planets and does not bolster studies suggesting a difference among low- and high-mass giant planet host star metallicities. Additionally, when analyzing a sample of 216 well-characterized giant planets, we find that both high masses (4 MJup 10 days) and hot (P 0.1). TOI-5542b is one of the oldest known warm Jupiters and it is cool enough to be unaffected by inflation due to stellar incident flux, making it a valuable contribution in the context of planetary composition and formation studies

    Three new brown dwarfs and a massive hot Jupiter revealed by TESS around early-type stars

    Get PDF
    Context. The detection and characterization of exoplanets and brown dwarfs around massive AF-type stars is essential to investigate and constrain the impact of stellar mass on planet properties. However, such targets are still poorly explored in radial velocity (RV) surveys because they only feature a small number of stellar lines and those are usually broadened and blended by stellar rotation as well as stellar jitter. As a result, the available information about the formation and evolution of planets and brown dwarfs around hot stars is limited. Aims. We aim to increase the sample and precisely measure the masses and eccentricities of giant planets and brown dwarfs transiting early-type stars detected by the Transiting Exoplanet Survey Satellite (TESS). Methods. We followed bright (V 6200 K that host giant companions (R > 7 R⊕) using ground-based photometric observations as well as high precision radial velocity measurements from the CORALIE, CHIRON, TRES, FEROS, and MINERVA-Australis spectrographs. Results. In the context of the search for exoplanets and brown dwarfs around early-type stars, we present the discovery of three brown dwarf companions, TOI-629b, TOI-1982b, and TOI-2543b, and one massive planet, TOI-1107b. From the joint analysis of TESS and ground-based photometry in combination with high precision radial velocity measurements, we find the brown dwarfs have masses between 66 and 68 MJup, periods between 7.54 and 17.17 days, and radii between 0.95 and 1.11 RJup. The hot Jupiter TOI-1107b has an orbital period of 4.08 days, a radius of 1.30 RJup, and a mass of 3.35 MJup. As a by-product of this program, we identified four low-mass eclipsing components (TOI-288b, TOI-446b, TOI-478b, and TOI-764b). Conclusions. Both TOI-1107b and TOI-1982b present an anomalously inflated radius with respect to the age of these systems. TOI-629 is among the hottest stars with a known transiting brown dwarf. TOI-629b and TOI-1982b are among the most eccentric brown dwarfs. The massive planet and the three brown dwarfs add to the growing population of well-characterized giant planets and brown dwarfs transiting AF-type stars and they reduce the apparent paucity
    corecore