12 research outputs found

    Protection and fault location schemes suited to large-scale multi-vendor high voltage direct current grids

    Get PDF
    Recent developments in voltage source converter (VSC) technology have led to an increased interest in high voltage direct current (HVDC) transmission to support the integration of massive amounts of renewable energy sources (RES) and especially, offshore wind energy. VSC-based HVDC grids are considered to be the natural evolution of existing point-to-point links and are expected to be one of the key enabling technologies towards expediting the integration and better utilisation of offshore energy, dealing with the variable nature of RES, and driving efficient energy balance over wide areas and across countries. Despite the technological advancements and the valuable knowledge gained from the operation of the already built multi-terminal systems, there are several outstanding issues that need to be resolved in order to facilitate the deployment of large-scale meshed HVDC grids. HVDC protection is of utmost importance to ensure the necessary reliability and security of HVDC grids, yet very challenging due to the fast nature of development of DC faults and the abrupt changes they cause in currents and voltages that may damage the system components. This situation is further exacerbated in highly meshed networks, where the effects of a DC fault on a single component (e.g. DC cable) can quickly propagate across the entire HVDC grid. To mitigate the effect of DC faults in large-scale meshed HVDC grids, fast and fully selective approaches using dedicated DC circuit breaker and protection relays are required. As the speed of DC fault isolation is one order of magnitude faster than typical AC protection (i.e. less than 10 ms), there is a need for the development of innovative approaches to system protection, including the design and implementation of more advanced protection algorithms. Moreover, in a multi-vendor environment (in which different or the same type of equipment is supplied by various manufacturers), the impact of the grid elements on the DC fault signature may differ considerably from case to case, thus increasing the complexity of designing reliable protection algorithms for HVDC grids. Consequently, there is a need for a more fundamental approach to the design and development of protection algorithms that will enable their general applicability. Furthermore, following successful fault clearance, the next step is to pinpoint promptly the exact location of the fault along the transmission medium in an effort to expedite inspection and repair time, reduce power outage time and elevate the total availability of the HVDC grid. Successful fault location becomes increasingly challenging in HVDC grids due to the short time windows between fault inception and fault clearance that limit the available fault data records that may be utilised for the execution of fault location methods. This thesis works towards the development of protection and fault location solutions, designed specifically for application in large-scale multi-vendor HVDC grids. First, a methodology is developed for the design of travelling wave based non-unit protection algorithms that can be easily configured for any grid topology and parameters. Second, using this methodology, a non-unit protection algorithm based on wavelet transform is developed that ensures fast, discriminative and enhanced protection performance. Besides offline simulations, the efficacy of the wavelet transform based algorithm is also demonstrated by means of real-time simulation, thereby removing key technical barriers that have impeded the use of wavelet transform in practical protection applications. Third, in an effort to reinforce the technical and economic feasibility of future HVDC grids, a thorough fault management strategy is presented for systems that employ efficient modular multilevel converters with partial fault tolerant capability. Finally, a fault location scheme is developed for accurately estimating the fault location in HVDC grids that are characterised by short post-fault data windows due to the utilisation of fast acting protection systems.Recent developments in voltage source converter (VSC) technology have led to an increased interest in high voltage direct current (HVDC) transmission to support the integration of massive amounts of renewable energy sources (RES) and especially, offshore wind energy. VSC-based HVDC grids are considered to be the natural evolution of existing point-to-point links and are expected to be one of the key enabling technologies towards expediting the integration and better utilisation of offshore energy, dealing with the variable nature of RES, and driving efficient energy balance over wide areas and across countries. Despite the technological advancements and the valuable knowledge gained from the operation of the already built multi-terminal systems, there are several outstanding issues that need to be resolved in order to facilitate the deployment of large-scale meshed HVDC grids. HVDC protection is of utmost importance to ensure the necessary reliability and security of HVDC grids, yet very challenging due to the fast nature of development of DC faults and the abrupt changes they cause in currents and voltages that may damage the system components. This situation is further exacerbated in highly meshed networks, where the effects of a DC fault on a single component (e.g. DC cable) can quickly propagate across the entire HVDC grid. To mitigate the effect of DC faults in large-scale meshed HVDC grids, fast and fully selective approaches using dedicated DC circuit breaker and protection relays are required. As the speed of DC fault isolation is one order of magnitude faster than typical AC protection (i.e. less than 10 ms), there is a need for the development of innovative approaches to system protection, including the design and implementation of more advanced protection algorithms. Moreover, in a multi-vendor environment (in which different or the same type of equipment is supplied by various manufacturers), the impact of the grid elements on the DC fault signature may differ considerably from case to case, thus increasing the complexity of designing reliable protection algorithms for HVDC grids. Consequently, there is a need for a more fundamental approach to the design and development of protection algorithms that will enable their general applicability. Furthermore, following successful fault clearance, the next step is to pinpoint promptly the exact location of the fault along the transmission medium in an effort to expedite inspection and repair time, reduce power outage time and elevate the total availability of the HVDC grid. Successful fault location becomes increasingly challenging in HVDC grids due to the short time windows between fault inception and fault clearance that limit the available fault data records that may be utilised for the execution of fault location methods. This thesis works towards the development of protection and fault location solutions, designed specifically for application in large-scale multi-vendor HVDC grids. First, a methodology is developed for the design of travelling wave based non-unit protection algorithms that can be easily configured for any grid topology and parameters. Second, using this methodology, a non-unit protection algorithm based on wavelet transform is developed that ensures fast, discriminative and enhanced protection performance. Besides offline simulations, the efficacy of the wavelet transform based algorithm is also demonstrated by means of real-time simulation, thereby removing key technical barriers that have impeded the use of wavelet transform in practical protection applications. Third, in an effort to reinforce the technical and economic feasibility of future HVDC grids, a thorough fault management strategy is presented for systems that employ efficient modular multilevel converters with partial fault tolerant capability. Finally, a fault location scheme is developed for accurately estimating the fault location in HVDC grids that are characterised by short post-fault data windows due to the utilisation of fast acting protection systems

    Real time evaluation of wavelet transform for fast and efficient HVDC grid non-unit protection

    Get PDF
    This paper presents a real-time evaluation of a Wavelet Transform (WT) for HVDC grid non-unit protection. Due to its time and frequency localisation capability, WT can successfully extract the necessary information present in the voltage transients following a DC fault. This capability is exploited to achieve fast and selective HVDC grid protection. A Digital Signal Processor (DSP) is employed to execute real-time Stationary Wavelet Transform (SWT) on voltage signals using discrete convolution to efficiently compute the WT coefficients. Hardware-in-the loop (HIL) simulation is performed to test a WT-based hardware module using a Digital Real-Time Simulator (DRTS), in which a meshed HVDC grid is modelled. The closed-loop interaction enables the hardware device to emulate a protection relay that can generate trip commands for the HVDC breakers integrated within the HVDC grid model. The real-time simulations demonstrate the technical feasibility, speed and robust performance of the SWT implementation

    A novel fault let-through energy based fault location for LVDC distribution networks

    Get PDF
    Low Voltage Direct Current (LVDC) distribution systems have recently been considered as an alternative approach to electrical system infrastructure as they provide the additional flexibility and controllability required to facilitate the integration of more low carbon technologies (LCTs). However, DC protection systems and, more specifically high accuracy DC fault location, have been recognised as a key challenge to facilitating post-fault network maintenance. Most of the existing fault location techniques rely on current derivative or communications-based methods that are either very sensitive to noise, or require a high level of data synchronisation. Fault energy has been recognized as a reliable indicator of more accurate fault location estimations. Therefore, this paper develops a mathematical model for describing fault energy during the transient period of DC faults. The method subsequently proposes a new fault let-through energy based DC fault location working strategy to facilitate post-fault network maintenance. The proposed method does not require data synchronisation regardless of the voltage, current, and the size of the converters connected to the LVDC feeder. The capabilities of the proposed fault location strategy are validated against different faults applied on an LVDC test network in PSCAD/EMTDC and shown to be more reliable and accurate than existing methods

    Non-unit protection for HVDC grids : an analytical approach for wavelet transform-based schemes

    Get PDF
    Speed and selectivity of DC fault protection are critical for High-Voltage DC (HVDC) grids and present significant technical and economic challenges. Therefore, this paper proposes a non-unit protection solution that detects and discriminates DC faults based on frequency domain analysis of the transient period of DC faults. The representation of a generic HVDC grid section and the corresponding DC-side fault signatures in the frequency domain form the basis of a generalized approach for analytically designing a protection scheme based on Wavelet Transform (WT). The proposed solution is adaptive within its design stage and offers general applicability and immunity to system changes, while the protection settings are configured for optimized performance. The scheme is validated through offline simulations in PSCAD/EMTDC and the technical feasibility of the algorithm in the real world is demonstrated through the use of real-time digital simulation (using RTDS) and Hardware-in-the-Loop (HIL) testing. Both offline and real-time simulations demonstrate that the scheme is able to detect and discriminate between internal and external faults at a significantly high speed, while remaining sensitive to high impedance faults and robust to external disturbances and outside noise

    Fault location in DC microgrids based on a multiple capacitive earthing scheme

    Get PDF
    This paper presents a new method for locating faults along feeders in a DC microgrid using a multiple capacitive earthing scheme. During fault conditions, capacitors within the earthing scheme are charging by transient currents that correlate to the fault distance and resistance. Therefore, by assessing the response of the capacitive earthing scheme during the fault, the distance to fault is estimated. The proposed method uti- lizes instantaneous current and voltage measurements (obtained from the feeder terminals and earthing capacitors) applied to an analytical mathematical model of the faulted feeder. The proposed method has been found to accurately estimate the fault position along the faulted feeder and systematic evaluation has been carried out to further scrutinize its performance under different loading scenarios and highly-resistive faults. Addition- ally, the performance and practical feasibility of the proposed method has been experimentally validated by developing a low- voltage laboratory prototype and testing it under a series of test conditions

    Review and evaluation of the state of the art of DC fault detection for HVDC grids

    Get PDF
    This paper reviews the state of the art of DC fault discrimination and detection methods of HVDC grids, and summarises the underlying principles and the characteristics of each method. To minimize HVDC grid disturbance and power transfer interruption due to DC faults, it is critically important to have protection schemes that can detect, discriminate and isolate DC faults at high speeds with full selectivity. On this basis, this paper lists the advantages and disadvantages of the most promising fault detection methods, with the aim of articulating the future directions of HVDC protection systems. From the qualitative comparison of relative merits, the initial recommendations on HVDC grid protection are presented. Moreover, a comprehensive quantitative assessments of different fault detection methods discussed above are carried out on a generic 4-terminal meshed HVDC grid, which is modelled in PSCAD environment. The presented simulation results identify that the voltage derivative and wavelet transform are the most promising methods for DC fault detection and discrimination

    Investigation of the impact of interoperability of voltage source converters on HVDC grid fault behaviour

    Get PDF
    Future HVDC grids are expected to incorporate different power converters from multiple vendors in the same system. Even if a complete converter station is developed by a single manufacturer, it might be challenging to integrate this terminal into a DC grid that comprises of several converter stations built by other vendors. Moreover, the different fault response exhibited by each converter technology complicates the design of HVDC protection systems. Therefore, this study investigates the fault response of a multivendor HVDC grid. An illustrative 4-terminal meshed HVDC grid, which is modelled in PSCAD environment, is used to perform studies of interoperability of different converter topologies on a common HVDC network. The investigation of the fault behaviour of such a multivendor HVDC network highlights the main impediments that need to be tackled and a set of actions that needs to be done at a converter level in order to mitigate the impact of DC faults on the HVDC system. Moreover, the key parameters that need to be taken into account when designing a protection scheme for a multivendor HVDC grid are identified

    Frequency domain analysis of HVDC grid non-unit protection

    No full text
    Owing to the fact that travelling wave propagation in an HVDC grid is a heavily frequency dependent phenomenon, frequency domain analysis has been identified as a useful means of assessing the capabilities and limitations of non-unit protection. This exploits the fact that the main difference between an internal and external fault is the presence of the series inductor in the fault path. The inductor acts as a high impedance element for high frequency components and consequently the transient voltage frequency response in each fault case is recognisably different. On this basis, the investigation in the frequency domain can reveal significant information for protection design purposes. Towards this aim, the transient voltage at the relay location is meticulously represented in the frequency domain by taking into account the transmission medium length and geometry, the number of other attached feeders to the same bus, the converter parameters, the inductive termination, the fault resistance, and the travelling wave behaviour of DC faults. By performing a sensitivity analysis on these parameters, a deeper understanding of their impact on HVDC non-unit protection is obtained. In addition, the factors that can be adjusted to extend the reach of the protection systems are revealed and a generic approach for analytically calculating the protection threshold is developed

    DC fault management strategy for continuous operation of HVDC grids based on customized hybrid MMC

    Get PDF
    Successful deployment of High-Voltage Direct Current (HVDC) grids necessitates effective DC fault handling strategies, which can minimize the severe consequences caused by DC faults on the AC and DC side of the HVDC grids. Therefore, this paper investigates the enhanced DC fault performance of the Customized Hybrid Modular Multilevel Converter (CH-MMC), in which a limited number of full-bridge sub-modules (FB-SMs) is added into the arms of the conventional MMC in an effort to significantly extend the timespan between fault inception and fault clearance, thus allowing the use of relatively slow and cheaper DC circuit breakers. Based on this converter, a dedicated DC fault handling strategy for CH-MMC based HVDC grids is proposed, which aims to improve the fault resiliency and security of HVDC grids for pole-to-pole faults. Moreover, the proposed DC fault management strategy guarantees the continuous operation of the grid during pole-to-ground DC faults, including full reactive power provision from the converter stations. The performance of the strategy is demonstrated using comprehensive electromagnetic transient (EMT) simulation studies conducted on an illustrative four-terminal meshed HVDC grid, which consider a range of scenarios with different fault current limiting inductors and DC circuit breaker operation times

    Protection of LVDC networks integrating smart transformers : the case of LV engine Falkirk trial site

    Get PDF
    To enhance the adaptability of low voltage (LV) networks and release additional network capacity towards enabling the wider uptake of low carbon technologies, SP Energy Network's (SPEN) LV Engine project aims to design and trial the first UK solid state transformer (SST) for deployment within secondary substations (11/0.4kV). The trial site at Falkirk Stadium that is aimed to be completed in the near future will form the first LVDC trial at a utility scale in the UK. The SST and the introduction of low voltage DC (LVDC) supplies will present fundamental changes in the operation of existing secondary substations and will introduce new LV fault profiles for the associated LVDC distribution networks. This paper presents the results of joint work between the University of Strathclyde, SPEN and WSP with the primary objectives to understand the impact of SST deployment on the fault behaviour of LVDC networks and develop adequate protection strategies for LV Engine LVDC trial sites
    corecore